Incorporating the zonal spherical function (zsf) problems on real and p‐adic hyperbolic planes into a Zakharov–Shabat integrable system setting, we find a wide class of integrable evolutions that respect the number‐theoretic properties of the zsf problem. This means that at all times these real and p‐adic systems can be unified into an adelic system with an S matrix that involves (Dirichlet, Langlands, Shimura,...) L functions.

1.
M. A.
Olshanetsky
and
A. M.
Perelomov
,
Phys. Rep.
94
,
313
(
1984
);
R. F.
Wehrhahn
,
Rev. Math. Phys.
6
,
1339
(
1994
).
2.
P. G. O.
Freund
,
Phys. Lett. B
257
,
119
(
1991
);
L.
Brekke
and
P. G. O.
Freund
,
Phys. Rep.
233
,
1
(
1993
).
3.
L. O.
Chekhov
,
J. Math. Phys.
36
,
414
(
1995
).
4.
L. D.
Faddeev
and
B. S.
Pavlov
,
Sem. LOMI
27
,
161
(
1972
);
P. D. Lax and R. S. Phillips, Scattering Theory for Automorphic Functions (Princeton University, Princeton, NJ, 1976).
5.
S. Gelbart and F. Shahidi, Analytic Properties of Automorphic L-Functions (Academic, Boston, 1988).
6.
M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform (SIAM, Philadelphia, 1981).
7.
J. Neukirch, Algebraische Zahlentheorie (Springer-Verlag, Berlin, 1992).
8.
E. W.
Barnes
,
Q. J. Pure Appl. Math
,
31
,
264
(
1900
);
J.
Milnor
,
Ens. Math.
29
,
281
(
1983
).
This content is only available via PDF.
You do not currently have access to this content.