Quantum gravity is studied nonperturbatively in the case in which space has a boundary with finite area. A natural set of boundary conditions is studied in the Euclidean signature theory in which the pullback of the curvature to the boundary is self‐dual (with a cosmological constant). A Hilbert space which describes all the information accessible by measuring the metric and connection induced in the boundary is constructed and is found to be the direct sum of the state spaces of all SU(2) Chern–Simon theories defined by all choices of punctures and representations on the spatial boundary 𝒮. The integer level k of Chern–Simons theory is found to be given by k=6π/G2Λ+α, where Λ is the cosmological constant and α is a CP breaking phase. Using these results, expectation values of observables which are functions of fields on the boundary may be evaluated in closed form. Given these results, it is natural to make the conjecture that the quantum states of the system are completely determined by measurements made on the boundary. One consequence of this is the Bekenstein bound, which says that once the two metric of the boundary has been measured, the subspace of the physical state space that describes the further information that may be obtained about the interior has finite dimension equal to the exponent of the area of the boundary, in Planck units, times a fixed constant. Finally, these results confirm both the categorical‐theoretic ‘‘ladder of dimensions’’ picture of Crane and the holographic hypothesis of Susskind and ’t Hooft.

1.
M. Green, J. Schwartz, and E. Witten, String Theory (Cambridge University, Cambridge).
2.
E.
Witten
,
Commun. Math. Phys.
121
,
351
(
1989
).
3.
M.
Atiyah
, “
Topological Quantum Field Theory
,”
Publ. Math. IHES
68
,
175
186
(
1989
);
The Geometry and Physics of Knots, Lezione Lincee (Cambridge University, Cambridge, 1990).
4.
G. Segal, “Conformal Field Theory,” Oxford preprint (1988).
5.
L.
Crane
, “
Clocks and Categories, is quantum gravity algebraic?
J. Math. Phys.
36
,
6180
6193
(
1995
);
“Categorical Physics,” in Knot theory and quantum gravity, edited by J. Baez (Oxford University, Oxford).
6.
L. Crane and D. Yetter, “On algebraic structures implicit in topological quantum field theories,” Kansas preprint (1994);
in Quantum Topology (World Scientific, Singapore, 1993), p. 120.
7.
L.
Crane
and
I. B.
Frenkel
,
J. Math. Phys.
35
,
5136
5154
(
1994
).
8.
C.
Rovelli
and
L.
Smolin
,
Phys. Rev. Lett.
61
,
1155
(
1988
);
C.
Rovelli
and
L.
Smolin
,
Nucl. Phys. B
133
,
80
(
1990
).
9.
R.
Gambini
and
A.
Trias
,
Phys. Rev. D
23
,
553
(
1981
);
R.
Gambini
and
A.
Trias
,
Lett. Nuovo Cimento
38
,
497
(
1983
);
R.
Gambini
and
A.
Trias
,
Phys. Rev. Lett.
53
,
2359
(
1984
);
R.
Gambini
and
A.
Trias
,
Nucl. Phys. B
278
,
436
(
1986
);
R.
Gambini
,
L.
Leal
, and
A.
Trias
,
Phys. Rev. D
39
,
3127
(
1989
);
R
Gambini
,
Phys. Lett. B
255
,
180
(
1991
).
10.
C.
Rovelli
,
Class. Quantum Gravit.
8
,
1613
(
1991
).
11.
L. Smolin, in Quantum Gravity and Cosmology, edited by J. Pérez-Mercader et al., (World Scientific, Singapore, 1992).
12.
A. Ashtekar, Non perturbative canonical gravity (World Scientific, Singapore, 1991).
13.
A.
Ashtekar
,
J.
Lewandowski
,
D.
Marlof
,
J.
Mourãu
, and
T.
Thiemann
, “
Quantization of diffeomorphism invariant theories of connections with local degrees of freedom
,”
J. Math. Phys.
36
,
6456
6493
(
1995
);
“Coherent state transform on the space of connections,” Penn State University preprint, gr-qc/9412014, J. Funct. Analysis (in press).
14.
B.
Bruegmann
,
R.
Gambini
, and
J.
Pullin
,
Phys. Rev. Lett.
68
,
431
(
1992
);
B.
Bruegmann
,
R.
Gambini
, and
J.
Pullin
,
Gen. Rel. Grav.
251
, (
1993
).
15.
L. J. Garay, “Quantum gravity and minimum length,” Imperial College preprint/TP/93-94/20, gr-qc/9403008 (1994).
16.
D.
Gross
and
P. F.
Mende
,
Phys. Lett. B
197
,
129
(
1987
);
D.
Gross
and
P. F.
Mende
,
Nucl. Phys. B
303
,
407
(
1988
).
17.
J. J.
Atick
and
E.
Witten
,
Nucl. Phys. B
310
,
291
(
1988
).
18.
M.
Kato
,
Phys. Lett. B
245
,
43
(
1990
),
K.
Konishi
,
G.
Paffuti
, and
P.
Provero
,
Phys. Lett. B
234
,
276
(
1990
);
G.
Veneziano
,
Europhys. Lett.
2
,
199
(
1986
);
D.
Amati
,
M.
Ciafaloni
, and
G.
Veneziano
,
Phys. Lett. B
216
,
41
(
1989
);
R.
Guida
,
K.
Konishi
, and
P.
Provero
,
Mod. Phys. Lett. A
6
,
1487
(
1991
).
19.
I.
Klebanov
and
L.
Susskind
,
Nucl. Phys. B
309
,
175
(
1988
).
20.
A.
Ashtekar
,
C.
Rovelli
, and
L.
Smolin
,
Phys. Rev. Lett.
69
,
237
(
1992
).
21.
C.
Rovelli
and
L.
Smolin
, “
Discreteness of volume and area in quantum gravity
,”
Nucl. Phys. B
442
,
593
(
1995
). Note, this paper contains an error in the values of the eigenvalues of the volume, which is corrected in Ref. 55.
22.
L. Smolin, “Experimental Signatures of Quantum Gravity,” to appear in the Proceedings of Drexel Symposium on quantum theory (World Scientific, Singapore, 1995), CGPG.
23.
Category-theoretic formulations of topological quantum field theories have also been explored in
J. C.
Baez
and
J.
Dolan
, “
Higher dimensional algebra and topological quantum field theory
,”
J. Math. Phys.
36
,
6073
6105
(
1995
),
and R. J. Lawrence, in Quantum Topology (World Scientific, Singapore, 1993), p. 191 and An introduction to topological quantum field theory, preprint (1995).
24.
J.
Baez
,
Class. Quantum. Gravit.
10
,
101
(
1993
).
25.
G. ’tHooft, Dimensional reduction in quantum gravity, Utrecht preprint THU-93/26;
gr-qc/9310006.
26.
L.
Susskind
, “
The world as a hologram
,”
J. Math. Phys.
36
,
6377
6396
(
1995
);
“Strings, black holes and lorentz contractions,” hep-th/9308139;
L. Susskind and P. Griffin, “Partons and black holes,” UFIFT-HEP-94-13 hep-ph/ 9410306.
27.
J. D.
Bekenstein
,
Lett. Nuovo Cimento
11
,
467
(
1974
).
28.
L.
Susskind
,
Phys. Rev. Lett.
71
,
2367
(
1993
);
L.
Susskind
,
Phys. Rev. D
49
,
6606
(
1994
);
L.
Susskind
,
50
,
2700
(
1994
).,
Phys. Rev. D
29.
T. Jacobson, “The Einstein equation of state,” Maryland preprint, 1995, to appear in Phys. Rev. Lett. (1995).
30.
L.
Smolin
and
C.
Soo
, “
The Chern-Simons invariant as the natural time variable for classical and quantum cosmology
,”
Nucl. Phys. B
327
,
205
(
1995
).
31.
J.
Fernando Barbero
,
Phys. Rev. D
49
,
6935
(
1994
).
32.
G.
Moore
and
N.
Seiberg
,
Phys. Lett. B
220
,
422
(
1989
);
G.
Moore
and
N.
Seiberg
,
Commun. Math. Phys.
123
,
177
(
1989
).
33.
S.
Ellitzur
,
G.
Moore
,
A.
Schwimmer
, and
N.
Seiberg
,
Nucl. Phys. B
326
,
108
(
1989
).
34.
L.
Crane
,
Commun. Math. Phys.
135
,
615
(
1991
);
L.
Crane
,
Phys. Lett. B
259
, n.
3
(
1991
).
35.
L.
Kauffman
,
Int. J. Mod. Phys. B
6
,
1765
(
1992
);
in A. Kawauchi, editor, KNOTS 90, p. 271 (1992);
L.
Kauffman
,
Int. J. Mod. Phys. A
5
,
93
(
1990
);
Knots and Physics (World Scientific, Singapore, 1991).
36.
R. Penrose, in Quantum theory and beyond, edited by T. Bastin (Cambridge University, Cambridge, 1971);
in Advances in Twistor Theory, edited by L. P. Hughston and R. S. Ward (Pitman, New York, 1979), p. 301;
in Combinatorial Mathematics and its Application, edited by D. J. A. Welsh (Academic, New York, 1971).
37.
L.
Smolin
,
Mod. Phys. Lett. A
4
,
1091
1112
(
1989
).
38.
D. Bar-Natan, Harvard preprint (1991);
E.
Guadagnini
,
M.
Martellini
, and
M.
Mintchev
,
Nucl. Phys. B
330
,
575
(
1990
).
39.
L.
Smolin
,
Gen. Relativ. Gravit.
16
,
205
(
1984
);
L.
Smolin
,
17
,
417
(
1985
).,
Gen. Relativ. Gravit.
40.
C. Rovelli and L. Smolin, “Spin networks and quantum gravity,” Penn State CGPG-95/4-4 and IASSNS-HEP-95/27 preprint, gr-qc/9505006.
41.
S. Major and L. Smolin, Quantum spin networks in quantum gravity, preprint in preparation.
42.
C.
Rovelli
and
L.
Smolin
,
Phys. Rev. Lett.
72
,
446
(
1994
).
43.
R. Borissov, C. Rovelli, and L. Smolin, Nonperturbative dynamics of quantum general relativity, preprint in preparation;
C.
Rovelli
, “
Outline of a generally covariant quantum field theory and a quantum theory of gravity
,”
J. Math. Phys.
36
,
6529
6547
(
1995
).
44.
R.
Capovilla
,
J.
Dell
, and
T.
Jacobson
,
Class. Quantum. Gravit.
8
,
59
(
1991
).
45.
C. Soo, Ph.D. thesis, VPI VPI-IHEP-92-11, 1992.
46.
A.
Ashtekar
,
A. P.
Balachandran
, and
S. G.
Jo
,
Int. J. Theor. Phys. A
4
,
1493
(
1989
).
47.
T.
Jacobson
and
L.
Smolin
,
Phys. Lett. B
196
,
39
(
1987
);
T.
Jacobson
and
L.
Smolin
,
Class. Quantum Gravit.
5
,
583
594
(
1988
);
J.
Samuel
,
Pramana J. Phys.
28
,
L429
(
1987
).
48.
For a rigorous mathematical viewpoint, see J. Baez, “Spin Network States in Gauge Theory,” Adv. Math., to appear 1995, gr-qc/941107.
49.
J.
Kogut
and
L.
Susskind
,
Phys. Rev. D
11
,
395
(
1975
);
W.
Furmanski
and
A.
Kowala
,
Nucl. Phys. B
291
,
594
(
1987
).
50.
H.
Oguri
,
Mod. Phys. Lett. A
7
,
2799
(
1992
);
V.
Turaev
and
O.
Viro
,
Topology
31
,
865
(
1992
).
51.
L. Smolin, Loop representation for quantum gravity in 2+1 dimensions, in The Proceedings of the John’s Hopkins Conference on Knots, Topology and Quantum Field Theory, edited by L. Lusanna (World Scientific, Singapore, 1989).
52.
Ya.
Aref’eva
,
Theor. Math. Phys.
43
,
353
(
1980
)
(
Ya.
Aref’eva
,
Teor. Mat. Fiz
43
,
111
(
1980
)).
53.
O. Bolstrum, M. Miller, and L. Smolin, Penn State preprint CPGP 94/3-3.
54.
S. Carlip, “The statistical mechanics of the 2+1 dimensional black hole,” gr-qc/9409052, UCD-94-32.
55.
R. Loll, “The volume operator in discretized quantum gravity,” preprint DFF 228/05/95.
This content is only available via PDF.
You do not currently have access to this content.