The critical behavior of the effective conductivity σ* of the random resistor network in Zd, near its percolation threshold, is considered. The network has bonds assigned the conductivities 1 and ε ≥ 0 in the volume fractions p and 1−p. Motivated by the statistical mechanics of an Ising ferromagnet at temperature T in a field H, we introduce a partition function and free energy for the resistor network, which establishes a direct correspondence between the two problems. In particular, we show that the free energies for the resistor network and the Ising model both have the same type of integral representation, which has the interpretation of the complex potential due to a charge distribution on [0, 1] in the s=1/(1−ε) plane for the resistor network, and on the unit circle in the z=exp(−2βH) plane for the ferromagnet. Based on this correspondence, we develop a Yang–Lee picture of the onset of nonanalytic behavior of the effective conductivity σ*, so that the percolation threshold p=pc is characterized as an accumulation point of zeros of the partition function in the complex p‐plane as ε → 0. A scheme is developed to find the locations of a certain sequence of zeros in the p‐plane, which is based on Padé approximation of a perturbation expansion of σ*(p,ε) around a homogeneous medium (ε=1). Furthermore, for ε ≳ 0, we construct a domain 𝒟ε containing [0, 1] in the p‐plane in which σ*(p,ε) is analytic, and which collapses as ε → 0. The explicit construction of this domain allows us to obtain a lower bound on the size of the gap in zeros of the partition function around the percolation threshold p=pc, which leads to the gap exponent inequality Δ≤1.

1.
D. Stauffer, Introduction to Percolation Theory (Taylor and Francis, London, 1985).
2.
H. Kesten, Percolation Theory for Mathematicians (Birkhaüser, Boston, 1982).
3.
G. Grimmett, Percolation (Springer-Verlag, New York, 1989).
4.
A. Bunde and S. Havlin (eds.), Fractals and disordered systems (Springer-Verlag, New York, 1991).
5.
J. P.
Straley
,
J. Phys. C
9
,
783
(
1976
).
6.
J. P.
Straley
,
Phys. Rev. B
15
,
5733
(
1977
).
7.
D. C.
Hong
,
H. E.
Stanley
,
A.
Coniglio
, and
A.
Bunde
,
Phys. Rev. B
33
,
4564
(
1986
).
8.
C. N.
Yang
and
T. D.
Lee
,
Phys. Rev.
87
,
404
(
1952
).
9.
T. D.
Lee
and
C. N.
Yang
,
Phys. Rev.
87
,
410
(
1952
).
10.
R. B. Griffiths, in Phase Transitions and Critical Phenomena, edited by C. Domb and M. Green (Academic, New York, 1972), Vol. 1, pp. 7–109.
11.
M. E. Fisher, Lectures in Theoretical Physics ( University of Colorado, Boulder, CO, 1965), Vol. VIIC.
12.
G. L.
Jones
,
J. Math. Phys.
7
,
2000
(
1964
).
13.
Y.
Abe
and
S.
Katsura
,
Prog. Theor. Phys.
43
,
1402
(
1970
).
14.
S.
Ono
,
M.
Suzuki
,
C.
Kawabata
, and
Y.
Karaki
,
J. Phys. Soc. Jpn. Suppl.
26
,
115
(
1969
).
15.
W.
Bestgen
,
S.
Grossman
, and
W.
Rosenhauer
,
J. Phys. Soc. Jpn. Suppl.
26
,
115
(
1969
).
16.
B.
Derrida
,
L.
De Seze
, and
C.
Itzykson
,
J. Stat. Phys.
33
,
559
(
1983
).
17.
C.
Moukarzel
and
N.
Parga
,
Phys. A
177
,
24
(
1991
).
18.
B.
Derrida
,
Phys. A
177
,
31
(
1991
).
19.
B.
Hu
and
B.
Lin
,
Phys. A
177
,
38
(
1991
).
20.
D. J.
Bergman
,
Phys. Rep. C
43
,
377
(
1978
).
21.
G. W.
Milton
,
Appl. Phys. Lett.
37
,
300
(
1980
).
22.
K.
Golden
and
G.
Papanicolaou
,
Commun. Math. Phys.
90
,
473
(
1983
).
23.
K.
Golden
,
Int. Series Num. Math.
102
,
71
(
1991
).
24.
M.
Avellaneda
and
A.
Majda
,
Commun. Math. Phys.
138
,
339
(
1991
).
25.
A.
Fannjiang
and
G.
Papanicolaou
,
SIAM J. Appl. Math.
54
,
333
(
1994
).
26.
G. Baker, Quantitative Theory of Critical Phenomena (Academic, New York, 1990).
27.
K. Golden, in Random Media and Composites, edited by R. V. Kohn and G. W. Milton (Society for Industrial and Applied Mathematics, Philadelphia, 1989), pp. 149–170.
28.
O.
Bruno
and
K.
Golden
,
J. Stat. Phys.
61
,
365
(
1990
).
29.
O.
Bruno
,
Proc. R. Soc. London, Ser. A
433
,
353
(
1991
).
30.
R. Sawicz and K. Golden, Bounds on the complex permittivity of matrix-particle composites, J. Appl. Phys. (in press).
31.
S. M.
Kozlov
,
Russ. Math. Surv.
44
,
91
(
1989
).
32.
L.
Berlyand
and
K.
Golden
,
Phys. Rev. B
50
,
2114
(
1994
).
33.
G.
Kirchhoff
,
Ann. Phys. Chem.
72
,
497
(
1847
).
34.
C.
Fortuin
and
P.
Kasteleyn
,
Physica
57
,
536
(
1972
).
35.
N. Akhiezer and I. Glazman, The Theory of Linear Operators in Hilbert Space (Ungar, New York, 1966).
36.
R. B.
Griffiths
,
C.
Hurst
, and
S.
Sherman
,
J. Math. Phys.
11
,
790
(
1970
).
37.
C. E.
Shannon
and
D.
Hagelbarger
,
J. Appl. Phys.
27
,
42
(
1956
).
38.
K.
Golden
,
J. Mech. Phys. Solids
34
,
333
(
1986
).
39.
G. W. Milton and K. Golden, in Thermal Conductivity 18, edited by T. Ashworth and D. R. Smith (Plenum, New York, 1985), pp. 571–582.
40.
O. Bruno, Ph.D. thesis, New York University, 1989.
41.
M. N.
Miller
,
J. Math. Phys.
10
,
1988
(
1969
).
This content is only available via PDF.
You do not currently have access to this content.