The even parity super‐Lax operator is considered for the supersymmetric KP hierarchy of the form L=D2+∑∞i=0 ui−2D−i+1 and two Hamiltonian structures are obtained following the standard method of Gel’fand and Dikii. It is observed that the first Hamiltonian structure is local and linear whereas the second Hamiltonian structure is nonlocal and nonlinear among the superfields appearing in the Lax operator. Their connections with the super‐w∞ algebra are discussed briefly.
REFERENCES
1.
A. C. Newell, Solitons in Mathematical Physics (SIAM, Philadelphia, 1985).
2.
L. D. Faddeev and L. A. Takhtajan, Hamiltonian Methods in the Theory of Solitons (Springer-Verlag, Berlin, 1987).
3.
A. Das, Integrable Models (World Scientific, Singapore, 1989).
4.
5.
6.
E. Date, M. Kashiwara, M. Jimbo, and T. Miwa, Nonlinear Integrable Systems, edited by M. Jimbo and T. Miwa (World Scientific, Singapore, 1983).
7.
8.
9.
10.
11.
12.
13.
E.
Bergshoeff
, C. N.
Pope
, L. J.
Romans
, E.
Sezgin
, and X.
Shen
, Phys. Lett. B
245
, 447
(1990
);E.
Bergshoeff
, B.
de Wit
, and M.
Vasiliev
, Phys. Lett. B
256
, 199
(1991
)., Phys. Lett. B
14.
15.
16.
17.
18.
19.
20.
21.
In a simpler situation such a constrained Lax operator has been treated in
J.
Barcelos-Neto
and A.
Das
, J. Math. Phys.
33
, 2743
(1992
).22.
For clarification on this point see
A.
Das
and W.-J.
Huang
, J. Math. Phys.
33
, 2487
(1992
).23.
The first reference in Ref. 13.
This content is only available via PDF.
© 1995 American Institute of Physics.
1995
American Institute of Physics
You do not currently have access to this content.