The space of states of some phenomena, in physics and other sciences, displays a hierarchical structure. When that is the case, it is natural to label the states by a p‐adic number field. Both the classification of the states and their relationships are then based on a notion of distance with ultrametric properties. The dynamics of the phenomena, that is, the transition between different states, is also a function of the p‐adic distance dp. However, because the distance is a symmetric function, probabilistic processes which depend only on dp have a uniform invariant probability measure, that is, all states are equally probable at large times. This being a severe limitation for cases of physical interest, processes with asymmetric transition functions have been studied. In addition to the dependence on the ultrametric distance, the asymmetric transition functions are allowed to depend also on the probability of the target state, leading to any desired invariant probability measure. When each state of a physical system is associated to several distinct hierarchical structures or parametrizations, an appropriate labeling set is the ring of adeles. Stochastic processes on the adeles are also constructed.

1.
M. Mezard, G. Parisi, and V. Virasoro, Spin Glass Theory and Beyond (World Scientific, Singapore 1987).
2.
R.
Rammal
,
G.
Toulouse
, and
M. A.
Virasoro
,
Rev. Mod. Phys.
58
,
765
(
1986
).
3.
V. S.
Dotsenko
,
Phys. Usp.
36
,
455
(
1993
).
4.
G. Parisi, in Perspectives on Biological Complexity, edited by O. T. Solbrig and G. N. Nicolis (IUBS, 1991), p. 77.
5.
H.
Epstein
and
D.
Ruelle
,
Phys. Rep.
184
,
289
(
1989
).
6.
A. T.
Ogielski
and
D. L.
Stein
,
Phys. Rev. Lett.
55
,
1634
(
1985
).
7.
S. Albeverio and W. Karwowski, Diffusion on p-adic numbers, Proceedings of Nagoya Conference, edited by T. Hida (1991).
8.
S. Albeverio and W. Karwowski, A random walk on p-adics-The generator and its spectrum, Bochum Preprint SFB 237/No. 135, 1991.
9.
L. Brekke and M. Olson, p-adic diffusion in glasses, Chicago Preprint EFI-89-23, 1989.
10.
R. Lima and R. Vilela Mendes, A stochastic process for the dynamics of the turbulent cascade, Marseille Preprint CPT-93/P2965.
11.
B.
Grossman
,
Phys. Lett. B
197
,
101
(
1987
);
P. G. O.
Freund
and
M.
Olson
,
Phys. Lett. B
199
,
186
(
1987
); ,
Phys. Lett. B
P. G. O.
Freund
and
E.
Witten
,
Phys. Lett. B
199
,
191
(
1987
); ,
Phys. Lett. B
I. V.
Volovich
,
Class. Quantum Gravit.
4
,
L83
(
1987
);
L.
Brekke
,
P. G. O.
Freund
,
M.
Olson
, and
E.
Witten
,
Nucl. Phys. B
302
,
365
(
1988
);
B. L.
Spokoiny
,
Phys. Lett. B
208
,
401
(
1988
);
P. H.
Frampton
and
Y.
Okada
,
Phys. Rev. Lett.
60
,
484
(
1988
);
P. H.
Frampton
and
Y.
Okada
,
Phys. Rev. D
37
,
3077
(
1988
);
Z.
Hlousek
and
D.
Spector
,
Phys. Lett. B
214
,
19
(
1988
);
R. B.
Zhang
,
Phys. Lett. B
209
,
229
(
1988
); ,
Phys. Lett. B
I. Ya.
Aref’eva
,
B. G.
Dragovitch
, and
I. V.
Volovich
,
Phys. Lett. B
209
,
445
(
1988
); ,
Phys. Lett. B
B
I. Ya.
Aref’eva
,
B. G.
Dragovitch
, and
I. V.
Volovich
,
214
,
339
(
1988
); ,
Phys. Lett. B
L.
Brekke
,
P. G. O.
Freund
,
E.
Melzer
and
M.
Olson
,
Phys. Lett. B
216
,
53
(
1989
); ,
Phys. Lett. B
A. V.
Zabrodin
,
Commun. Math. Phys.
123
,
463
(
1989
).
12.
L.
Brekke
and
P. G. O.
Freund
,
Phys. Rep.
233
,
1
(
1993
).
13.
I. Ya.
Aref’eva
and
I. V.
Volovich
,
Phys. Lett. B
268
,
179
(
1991
);
P. G. O. Freund, On the quantum group p-adics connection, Chicago Preprint EFI-90-90.
14.
P. H.
Frampton
and
I. V.
Volovich
,
Mod. Phys. Lett. A
5
,
1825
(
1990
);
I. Ya.
Aref’eva
and
P. H.
Frampton
,
Mod. Phys. Lett. A
6
,
313
(
1991
).,
Mod. Phys. Lett. A
15.
B. D. B.
Roth
,
Phys. Lett. B
213
,
263
(
1988
).
16.
J. M.
Alberty
,
Phys. Lett. B
221
,
250
(
1989
);
J. M.
Alberty
,
228
,
483
(
1989
).,
Phys. Lett. B
This content is only available via PDF.
You do not currently have access to this content.