In this article the q‐deformed gamma function and q‐deformed beta function are discussed in detail. Three definitions for the q‐gamma function are obtained and the q‐deformed duplication and multiplication formulas are proven. The q‐beta function is defined and its useful properties are derived.

1.
L. Faddeev, Les Houches XXXIX, edited by J. Zuber and R. Stora (Elsevier, Amsterdam, 1984).
2.
M.
Jimbo
,
Lett. Math. Phys.
10
,
63
(
1985
);
M.
Jimbo
,
11
,
247
(
1986
).,
Lett. Math. Phys.
3.
V.
Drinfel’d
,
Proc. Int. Congr. of Math., Berkeley,
1
,
798
(
1986
).
4.
M.
Arik
and
D.
Coon
,
J. Math. Phys.
17
,
524
(
1976
).
5.
L.
Biedenharn
,
J. Phys. A
22
,
L873
(
1989
).
6.
A.
Macfahlane
,
J. Phys. A
22
,
4581
(
1989
).
7.
J.
Wess
and
B.
Zumino
,
Nucl. Phys. B (Proc. Suppl.)
18B
,
302
(
1990
).
8.
F.
Jackson
,
Trans. R. Soc.
46
,
1253
(
1908
).
9.
F.
Jackson
,
Q. J. Math.
41
,
193
(
1910
).
10.
R.
Gray
and
C.
Nelson
,
J. Phys. A
23
,
L945
(
1990
).
11.
D.
Bernard
and
A.
Leclair
,
Phys. Lett. B
227
,
417
(
1989
).
12.
W. S. Chung, K. S. Chung, and S. T. Nam, “On the q-exponential functions and q-trigonometry,” Preprint GNU-TG-93-8, submitted to Rep. Math. Phys.
This content is only available via PDF.
You do not currently have access to this content.