A model is proposed for calculating the magnetic susceptibility of isotropic classical spin chains showing nearest neighbor correlated cationic distributions. It allows one to obtain a general closed‐form expression: This expression formally looks like previous ones obtained in the case of random chains for which the neighboring cationic species are not correlated; but here the previous intervening scalar parameters are replaced by vectorial and matricial expressions.

1.
J. Pebler (private communication);
A.
le Lirzin
,
J.
Darriet
,
R.
Georges
, and
J. L.
Soubeyroux
,
J. Magn. Mag. Mat.
109
,
47
(
1992
).
2.
M. F.
Thorpe
,
J. de Phys.
36–12
,
1177
(
1975
).
3.
M.
Drillon
,
E.
Coronado
,
D.
Beltran
, and
R.
Georges
,
Chem. Phys.
79
,
449
(
1983
).
4.
A.
Mosset
,
J.
Galy
,
E.
Coronado
,
M.
Drillon
, and
D.
Beltran
,
J. Am. Chem. Soc.
106
,
2864
(
1984
).
5.
Xu Qiang, Thèse de Doctorat, Université de Bordeaux I (1987).
6.
R.
Georges
and
Xu.
Qiang
,
Chin. Phys. Lett.
6–11
,
518
(
1989
).
7.
J. Curély, Thèse de Doctorat, Université de Bordeaux I (1990).
8.
Xu.
Qiang
,
J.
Darriet
, and
R.
Georges
,
J. Magn. Mag. Mat.
73
,
379
(
1988
).
9.
M. E.
Fisher
,
Am. J. Phys.
32
,
343
(
1964
).
10.
S.
Krzeminski
,
Phys. Stat. Sol. B
80
,
651
(
1977
).
11.
R.
Georges
and
J.
Curély
,
J. de Chim. Phys.
86–5
,
967
(
1989
).
12.
J.
Curély
,
R.
Georges
, and
M.
Drillon
,
Phys. Rev. B
33
,
6243
(
1986
).
This content is only available via PDF.
You do not currently have access to this content.