The quantum net model differs from other quantizations and discretizations of space‐time in being founded upon quantum‐logical principles. Fermions are envisaged as arising from defects in the net. Such defects are investigated and it is found that the attempt to vary them infinitesimally gives rise to a reticular version of the Dirac operator, which now has a simple interpretation in terms of quantum mechanical infinitesimal parallel transport. The analog of the usual massless Weyl equations are found to hold on the net, and algebraic solutions are deduced by exploiting its inherent logical structure. A correspondence principle then applies to show that these equations and their solutions correspond precisely to the ones expected in the continuum. (In the course of this, new basis‐independent expressions for the complex Minkowski‐space Dirac matrices are found.) Finally, an attempt is made to introduce gravity into the net, and the flat space Dirac Lagrangian is modified accordingly.

1.
J. W. Barrett, D. Finkelstein, J. M. Gibbs, W. Mantke, F. T. Smith, and S. Selesnick, Q groups, and Q spacetime, to appear in the proceedings of the 13th International Conference on General Relativity and Gravitation, Cordoba, Argentina, 1992.
2.
D.
Finkelstein
,
Int. J. Theor. Phys.
26
,
109
(
1987
);
D.
Finkelstein
,
27
,
473
(
1988
); ,
Int. J. Theor. Phys.
D.
Finkelstein
,
28
,
441
(
1939
); ,
Int. J. Theor. Phys.
D.
Finkelstein
,
28
,
1081
(
1989
); ,
Int. J. Theor. Phys.
in The Philosophy of Vacuum, edited by S. Saunders and H. R. Brown (Oxford University, Oxford, 1991);
Quantum Spacetime (Springer-Verlag, New York, 1994).
3.
D. Finkelstein and J. M. Gibbs, Particle groups from quantum relativity (1993), preprint.
4.
D.
Finkelstein
and
W. H.
Hallidy
,
Int. J. Theor. Phys.
30
,
463
(
1991
).
5.
S. A.
Selesnick
,
Int. J. Theor. Phys.
30
,
1273
(
1991
).
6.
M.
Barnabei
,
A.
Brini
, and
G.-C.
Rota
,
J. Alg.
96
,
120
(
1985
).
7.
C. F. v. Weizsäcker, in Quantum Theory and the Structures of Time and Space, Vol. 2, edited by L. Castell, M. Drieschner, and C. F. v. Weizsäcker (Carl Hanser Verlag, Munich, 1977).
8.
G. Hochschild, The structure of Lie groups (Holden-Day, San Francisco, 1965).
9.
Karl
Heinrich Hofmann
, The Duality of Compact Semigroups and C*-bigebras,
Springer Lect. Notes Math.
129
(
1970
).
10.
S.
Sankaran
and
S. A.
Selesnick
,
Semigroup Forum
3
,
108
(
1971
).
11.
S. A.
Selesnick
,
Duke Math. J.
40
,
831
(
1973
).
12.
M. Enock and J. Schwartz, Kac Algebras and the Duality of Locally Compact Groups (Springer-Verlag, New York, 1992).
13.
J.-P. Serre, Lie Algebras and Lie Groups (Benjamin, New York, 1965).
14.
N. N. Bogolubov, A. A. Logunov, and I. T. Todorov, Introduction to Axiomatic Quantum Field Theory (Benjamin, New York, 1975).
15.
S. A.
Selesnick
,
Nuovo Cimento A
90
,
171
(
1985
).
16.
J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics (McGraw-Hill, New York 1964).
17.
W. Mantke, Picture Independent Quantum Action Principle, Ph.D thesis, Georgia Institute of Technology, 1992.
This content is only available via PDF.
You do not currently have access to this content.