The recent success of the δ‐expansion in the solution of the Thomas–Fermi equation is interpreted to be due to the selection of an expansion parameter that interpolates between the dimension of interest, n=3, and the dimension where the problem is exactly soluble, n=2.

1.
C. M.
Bender
,
K. A.
Milton
,
S. S.
Pinsky
, and
L. M.
Simmons
, Jr.
,
J. Math. Phys.
30
,
1447
(
1989
).
2.
N. H. March, Electron Density Theory of Atoms and Molecules (Academic, New York, 1992).
3.
B. J.
Laurenzi
,
J. Math. Phys.
31
,
2535
(
1990
).
4.
A.
Cedillo
,
J. Math. Phys.
34
,
2713
(
1993
).
5.
G. F.
Kventsel
and
J.
Katriel
,
Phys. Rev. A
24
,
2299
(
1981
).
6.
M. Abramovitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972), Chap. 9.
7.
K. G.
Wilson
and
M. E.
Fisher
,
Phys. Rev. Lett.
28
,
240
(
1972
);
K. G.
Wilson
,
Phys. Rev. Lett.
28
,
548
(
1972
).,
Phys. Rev. Lett.
8.
D. J.
Doren
and
D. R.
Herschbach
,
Phys. Rev. A
34
,
2654
(
1986
).
9.
C. M.
Bender
,
S.
Boettcher
, and
L.
Lipatov
,
Phys. Rev. Lett.
68
,
3674
(
1992
).
This content is only available via PDF.
You do not currently have access to this content.