General adiabatic evolutions associated to Hamiltonians, which admit a holomorphic extension with respect to the time variable in a complex strip, and whose spectrum satisfies a gap condition are studied. An explicit rate of exponential decay is given, which is related to simple geometric quantities associated to the spectrum of the Hamiltonian, for the transition probability between the two parts of the spectrum when the evolution is taken from −∞ to +∞.

1.
M.
Born
and
V.
Fock
, “
Beweis des Adiabatensatzes
,”
Z. Phys.
51
,
165
169
(
1928
).
2.
T.
Kato
, “
On the adiabatic theorem of quantum mechanics
,”
J. Phys. Soc. Jpn.
5
,
435
439
(
1950
).
3.
A.
Lenard
, “
Adiabatic invariants to all orders
,”
Ann. Phys.
6
,
261
276
(
1959
).
4.
L. M.
Garrido
, “
Generalized adiabatic invariance
,”
J. Math. Phys.
5
,
355
362
(
1964
).
5.
S. J.
Sancho
, “
m-th order adiabatic invariance for quantum systems
,”
Proc. Phys. Soc. London
89
,
1
5
(
1966
).
6.
G.
Nenciu
, “
Adiabatic theorem and spectral concentration
,”
Commun. Math. Phys.
82
,
121
135
(
1981
).
7.
J. E.
Avron
,
R.
Seiler
, and
L. G.
Yaffe
, “
Adiabatic theorems and applications to the quantum hall effect
,”
Commun. Math. Phys.
110
,
33
49
(
1987
).
[Erratum:
J. E.
Avron
,
R.
Seiler
, and
L. G.
Yaffe
,
Commun. Math. Phys.
156
,
649
650
(
1993
)].
8.
A. M.
Dykhne
, “
Adiabatic perturbation of discrete spectrum states
,”
Sov. Phys. JETP
14
,
941
943
(
1962
).
9.
A.
Joye
,
H.
Kunz
, and
C.-E.
Pfister
, “
Exponential decay and geometric aspect of transition probabilities in the adiabatic limit
,”
Ann. Phys.
208
,
299
332
(
1991
).
10.
G.
Nenciu
, “
Linear adiabatic theory. Exponential estimates
,”
Commun. Math. Phys.
152
,
479
496
(
1993
).
11.
A.
Joye
and
C.-E.
Pfister
, “
Exponentially small adiabatic invariant for the Schrödinger equation
,”
Commun. Math. Phys.
140
,
15
41
(
1991
).
12.
A.
Joye
and
C.-E.
Pfister
, “
Superadiabatic evolution and transition probability between two non-degenerate levels isolated in the spectrum
,”
J. Math. Phys.
34
,
454
479
(
1993
).
13.
V.
Jakšić
and
J.
Segert
, “
Exponential approach to the adiabatic limit and the Landau-Zener formula
,”
Rev. Math. Phys.
4
,
529
574
(
1992
).
14.
A. Joye, “Proof of the Landau-Zener Formula,” Preprint C.P.T. Marseille, Dec. 1992.
15.
A. Martinez, “Estimates on Complex Interactions in Phase Space,” Preprint Univ. Paris 13, and to appear in Mathematische Nachrichten.
16.
A. Martinez, “Estimations sur l’effet tunnel microlocal,” Séminaire E.D.P. de l’Ecole Polytechnique, 1991–92.
17.
S. Agmon, “Lectures on exponential decay of solutions of second-order elliptic equations,” in Mathematical Notes 29 (Princeton University, Princeton, NJ, 1982).
18.
L.
Lithner
, “
A theorem of the Phragmen-Lindelöf type for second-order elliptic operators
,”
Arkiv f. Matematik
5
(
18
)
281
285
(
1965
).
19.
B.
Helffer
and
J.
Sjöstrand
, “
Multiple Wells in the Semiclassical Limit I
,”
Comm. P.D.E.
,
9
(
4
),
337
408
(
1984
).
20.
J.
Sjöstrand
, “
Singularités analytiques microlocales
,”
Astérisque
95
(
1982
).
21.
A. Martinez, “Estimations exponentielles précisées en théorie adiabatique,” Proceedings of the “Journées Equations aux Dérivées Partielles de Saint-Jean-de-Monts,” juin 1993, Ed. Ecole Polytechnique.
22.
G. Nenciu, “Exponential estimates in linear adiabatic theory: dependance on the gap,” Preprint Mittag-Leffler Institute, 1993.
23.
J. Sjöstrand, Graduate Lecture at the University of Lund, 1985–86 (Manuscript).
24.
M. Reed and B. Simon, Methods of Modern Mathematical Physics (Academic, New York, 1979).
25.
D. Robert, Autour de I’Approximation Semi-classique (Birkaüser, Basal, 1987).
26.
A. Balazard-Konlein, “Calcul fonctionel pour des opèrateurs h-admissibles à symbole opérateurs et applications,” Thèse de 3ème cycle, Universitè de Nantes (1985).
27.
C.
Gérard
,
A.
Martinez
, and
J.
Sjöstrand
, “
A mathematical approach to the effective Hamiltonian in perturbed periodic problems
,”
Commun. Math. Phys.
142
(
2
), (
1991
).
This content is only available via PDF.
You do not currently have access to this content.