Two‐point and four‐point graphs appearing in a three‐loop approximation in the field theory renormalization group scheme are calculated in general dimensions. Combining Feynman parameterization and direct integration loop integrals are represented in the form of the expressions, depending on the space dimension d as a parameter. The expressions obtained enables one to consider renormalization group functions directly at noninteger d.

1.
K. G.
Wilson
and
M. E.
Fisher
,
Phys. Rev. Lett.
28
,
240
(
1972
).
2.
K. G.
Wilson
and
J.
Kogut
,
Phys. Rep. C
12
,
75
(
1974
).
3.
G.
Parisi
,
J. Stat. Phys.
23
,
49
(
1980
).
4.
G. Parisi, in Proceedings of the 1973 Cargese Summer School, unpublished.
5.
B. G. Nickel, D. I. Meiron, and G. A. Baker, Jr., Compilation of two-point and four-point graphs for continuous spin models. University of Guelph Report, 1977.
6.
Y.
Gefen
,
B.
Mandelbrot
, and
A.
Aharony
,
Phys. Rev. Lett.
45
,
855
(
1980
).
7.
Y.
Wu
and
B.
Hu
,
Phys. Rev. A
35
,
1404
(
1987
).
8.
B.
Bonnier
,
Y.
Leroyer
, and
C.
Meyers
,
Phys. Rev. B
37
,
5205
(
1988
).
9.
B.
Bonnier
,
Y.
Leroyer
, and
C.
Meyers
,
Phys. Rev. B
40
,
8961
(
1989
).
10.
Yu.
Holovatch
and
M.
Shpot
,
J. Stat. Phys.
66
,
867
(
1992
).
11.
S. L.
Katz
,
M.
Droz
, and
J. D.
Gunton
,
Phys. Rev. B
15
,
1597
(
1977
).
12.
J. C.
Le Guillou
and
J.
Zinn-Justin
,
J. Phys. (Paris)
48
,
19
(
1987
).
13.
B.
Bonnier
and
M.
Hontebeyrie
,
J. Phys. (Paris) I
1
,
5205
(
1991
).
14.
M. A.
Novotny
,
Europhys. Lett.
17
,
297
(
1992
).
15.
M. A.
Novotny
,
Phys. Rev. B
46
,
2939
(
1992
).
16.
M. A. Novotny, What is the scaling dimension of finite systems?, Florida State University Preprint, 1992.
17.
Yu.
Holovatch
,
Theor. Math. Phys. (Moscow)
96
,
482
(
1993
).
18.
Yu.
Holovatch
,
Int. J. Mod. Phys. A
8
,
5329
(
1993
);
Phase transition in continuous symmetry model in general dimension: Fixed dimension renormalization group approach, Saclay Preprint, 1992.
19.
e.g., in the case of the weakly diluted Ising model, where ε1/2 is the expansion parameter [
D. E.
Khmelnitsky
,
JETF
68
,
1960
(
1975
) ( in Russian)] accurate results at noninteger d in the frames of the field-theoretical renormalization group approach can be obtained only in the frames of the fixed-dimension approach considered here.
20.
See, however,
G. A.
Baker
, Jr.
and
L. P.
Benofy
,
J. Stat. Phys.
29
,
699
(
1982
).
21.
E.
Brezin
,
J. C.
Le Guillou
, and
J.
Zinn-Justin
,
Phys. Rev. B
10
,
892
(
1974
).
22.
D. J. Amit, Field theory, the Renormalization Group, and Critical Phenomena (McGraw-Hill, New York, 1978), p. 336.
23.
As usual, the dimensionless parameter λ′ = λmd−4 is introduced and a change of integration variables q = mq in the momentum integrals is performed. The normalization constant has been chosen so that the tabulated integral value for the one-loop graph 2-U2 (see Fig. 2) is normalized to unity.
24.
B. G.
Nickel
,
J. Math. Phys.
19
,
542
(
1978
).
25.
W. H. Press, B. P. Flannery, S. A. Tlukolsky, and W. T. Vettering, Numerical Recipes. The Art of Scientific Computing (Cambridge University, Cambridge, England, 1986), p. 818.
This content is only available via PDF.
You do not currently have access to this content.