From complete knowledge of the eigenvalues of the negative Laplacian on a bounded domain, one may extract information on the geometry and the boundary conditions by analyzing the asymptotic expansion of a spectral function. Explicit calculations are performed for an equilateral triangular domain with Dirichlet or Neumann boundary conditions, yielding in particular the corner angle terms. In three dimensions, some applications to eigenvalue problems for an equilateral triangular prism are dealt with, including the solid vertex terms.

1.
H. P. W.
Gottlieb
, “
Eigenvalues of the Laplacian for rectilinear regions
,”
J. Aust. Math. Soc. Ser. B
29
,
270
281
(
1988
).
2.
A.
Pleijel
, “
A study of certain Green’s functions with applications in the theory of vibrating membranes
,”
Ark. Mat.
2
,
553
569
(
1954
).
3.
A.
Pleijel
, “
On Green’s functions and the eigenvalue distribution of the three-dimensional membrane equation
,”
Skandinav. Mat. Konger
12
,
222
240
(
1954
).
4.
M.
Kac
, “
Can one hear the shape of a drum?
,”
Am. Math. Mon.
73
,
1
23
(
1966
).
5.
H. P.
McKean
and
I. M.
Singer
, “
Curvature and the eigenvalues of the Laplacian
,”
J. Diff. Geom.
1
,
43
69
(
1967
).
6.
K.
Stewartson
and
R. T.
Waechter
, “
On hearing the shape of a drum: Further results
,”
Proc. Cambridge Philos. Soc.
69
,
353
363
(
1971
).
7.
R. T.
Waechter
, “
On hearing the shape of a drum: An extension to higher dimensions
,”
Proc. Cambridge Philos. Soc.
72
,
439
447
(
1972
).
8.
B. D.
Sleeman
and
E. M. E.
Zayed
, “
An inverse eigenvalue problem for a general convex domain
,”
J. Math. Anal. Appl.
94
,
78
95
(
1983
).
9.
B. D.
Sleeman
and
E. M. E.
Zayed
, “
Trace formulas for the eigenvalues of the Laplacian
,”
ZAMP J. Appl. Math. Phys.
35
,
106
115
(
1984
).
10.
P.
Hsu
, “
On the Θ function of a Riemannian manifold with boundary
,”
Trans. Am. Math. Soc.
333
,
643
671
(
1992
).
11.
E. M. E.
Zayed
and
A. I.
Younis
, “
An inverse problem for a general convex domain with impedance boundary conditions
,”
Q. Appl. Math.
48
,
181
188
(
1990
).
12.
E. M. E. Zayed, “An inverse eigenvalue problem for the Laplace operator,” in Ordinary and Partial Differential Equations, edited by W. N. Everitt and B. D. Sleeman, Lecture Notes in Mathematics, Vol. 964 (Springer-Verlag, Berlin, 1982), pp. 718–726.
13.
E. M. E.
Zayed
, “
Eigenvalues of the Laplacian: An extension to higher dimensions
,”
IMA J. Appl. Math.
33
,
83
99
(
1984
).
14.
E. M. E.
Zayed
, “
An inverse eigenvalue problem for a general convex domain: An extension to higher dimensions
,”
J. Math. Anal. Appl.
112
,
455
470
(
1985
).
15.
E. M. E.
Zayed
, “
Eigenvalues of the Laplacian for the third boundary value problem
,”
J. Aust. Math. Soc. Ser. B
29
,
79
87
(
1987
).
16.
E. M. E.
Zayed
, “
Eigenvalues of the Laplacian for the third boundary value problem: An extension to higher dimensions
,”
J. Math. Anal. Appl.
130
,
78
96
(
1988
).
17.
E. M. E.
Zayed
, “
Heat equation for an arbitrary doubly connected region in R2 with mixed boundary conditions
,”
ZAMP J. Appl. Math. Phys.
40
,
339
355
(
1989
).
18.
E. M. E.
Zayed
, “
Hearing the shape of a general convex domain
,”
J. Math. Anal. Appl.
142
,
170
187
(
1989
).
19.
E. M. E.
Zayed
, “
On hearing the shape of an arbitrary doubly connected region in R2
,”
J. Aust. Math. Soc. Ser. B
31
,
472
483
(
1990
).
20.
E. M. E.
Zayed
, “
Heat equation for an arbitrary multiply connected region in R2 with impedance boundary conditions
,”
IMA J. Appl. Math.
45
,
233
241
(
1990
).
21.
E. M. E.
Zayed
, “
Hearing the shape of a general doubly connected domain in R3 with impedance boundary conditions
,”
J. Math. Phys.
31
,
2361
2365
(
1990
).
22.
E. M. E.
Zayed
, “
Hearing the shape of a general doubly connected domain in R3 with mixed boundary conditions
,”
ZAMP J. Appl. Math. Phys.
42
,
547
564
(
1991
).
23.
E. M. E.
Zayed
, “
Heat equation for a general convex domain in R3 with a finite number of piecewise impedance boundary conditions
,”
Appl. Anal.
42
,
209
220
(
1991
).
24.
M. V.
Den Berg
and
S.
Srisatkunarajah
, “
Heat equation for a region in R2 with a polygonal boundary
,”
J. London Math. Soc.
37
,
119
127
(
1988
).
25.
H. P. W.
Gottlieb
, “
Eigenvalues of the Laplacian with Neumann boundary conditions
,”
J. Aust. Math. Soc Ser. B
26
,
293
309
(
1985
).
26.
H. P. W.
Gottlieb
, “
Hearing the shape of an annular drum
,”
J. Aust. Math. Soc. Ser. B
24
,
435
438
(
1983
).
27.
M. A.
Pinsky
, “
The eigenvalues of an equilateral triangle
,”
SIAM J. Math. Anal.
11
,
819
827
(
1980
);
Completeness of the eigenfunctions of the equilateral triangle
,”
SIAM J. Math. Anal.
16
,
848
851
(
1985
).,
SIAM J. Math. Anal.
28.
A. I. Younis, Ph.D. thesis, Zagazig University, Egypt (in preparation).
This content is only available via PDF.
You do not currently have access to this content.