A study of the acoustic Helmholtz resonator and of its electromagnetic analog (a cylinder with a narrow slit) is performed. For the associated Green functions, power series asymptotics with respect to a small parameter ε (‘‘radius’’ of the resonator hole or the width of the slit), and ln ε of poles τε with small imaginary parts are obtained by using the method of matching asymptotic expansions. The principal terms of solution asymptotics for corresponding boundary value problems are given.
REFERENCES
1.
2.
3.
4.
5.
6.
7.
E. Sanchez-Palencia, Nonhomogeneous Media and Vibration Theory (Springer-Verlag, New York, 1980).
8.
9.
S. V.
Petras
, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI)
51
, 155
(1975
).10.
11.
P. D.
Hislop
and A.
Martinez
, Indiana Univ. Math. J.
40
, 767
(1991
).12.
R. M. Brown, P. D. Hislop, and A. Martinez, J. Differential Eqs. (to appear).
13.
P. D. Hislop, Astérisque (to appear).
14.
15.
M. D. Van Dyke, Perturbation Method in Fluid Mechanics (Academic, New York, 1964).
16.
A. H. Nayfeh, Perturbation Methods (Wiley, New York, 1973).
17.
A. M. Il’in, Matching of Asymptotic Expansions of Solutions of Boundary Valued Problems (Nauka, Moscow, 1989) [English transl. (Am. Math. Soc., Providence, RI, 1992)].
18.
J. Sanchez-Hubert and E. Sanchez-Palencia, Coupling of Continuous Systems. Asymptotic Methods (Springer-Verlag, Berlin, 1989).
19.
20.
G. I. Eskin, Boundary Value Problems for Elliptic Pseudodifferential Equations, translated from Russian by S. Smith (Ann. Math. Society Translation of Mathematical Monographs 52, Providence, R.I., 1981).
21.
M. S. Agranovich, “Spectral properties of diffraction problems,” Appendix in N. N. Voytovich, B. Z. Katsenelenbaum, and A. N. Sivov, Generalized Method of Eigenoscillations in Diffraction Theory (Nauka, Moscow, 1977).
22.
T. Kato, Perturbation Theory for Linear Operators (Springer-Verlag, Berlin, 1966).
23.
G. Polya and G. Szego, Isoperimetric Inequalities in Mathematical Physics (Princeton University, Princeton, 1951).
24.
N. S. Landkof, Foundation of Modern Potential Theory (Nauka, Moscow, 1966).
25.
26.
27.
28.
29.
30.
This content is only available via PDF.
© 1994 American Institute of Physics.
1994
American Institute of Physics
You do not currently have access to this content.