Systematic use of the infinite‐dimensional spin representation simplifies and rigorizes several questions in quantum field theory. This representation permutes ‘‘Gaussian’’ elements in the fermion Fock space, and is necessarily projective: its cocycle at the group level is computed, and Schwinger terms and anomalies from infinitesimal versions of this cocycle are obtained. Quantization, in this framework, depends on the choice of the ‘‘right’’ complex structure on the space of solutions of the Dirac equation. We show how the spin representation allows one to compute exactly the S‐matrix for fermions in an external field; the cocycle yields a causality condition needed to determine the phase.
REFERENCES
1.
D.
Shale
and W. F.
Stinespring
, J. Math. Mech.
14
, 315
(1965
).2.
A. Pressley and G. Segal, Loop Groups (Clarendon, Oxford, 1986).
3.
J. Mickelsson, Current Algebras and Groups (Plenum, New York, 1989).
4.
5.
6.
N. Bourbaki, Algèbre (Hermann, Paris, 1959), Chap. 9.
7.
G. G. Emch, Algebraic Methods in Statistical Mechanics and Quantum Field Theory (Wiley, New York, 1972).
8.
M. E. Taylor, Noncommutative Harmonic Analysis, Math. Surveys and Monographs, Vol. 22 (American Mathematic Society, Providence, RI, 1986).
9.
I. E.
Segal
, Adv. Math. Suppl. Studies
3
, 321
(1978
).10.
11.
H. B. Lawson and M. L. Michelsohn, Spin Geometry (Princeton University, Princeton, 1989).
12.
13.
14.
15.
A. D. Popov and A. G. Sergeev, “Bosonic strings, ghosts and geometric quantization,” Preprint No. JINR-E2-92-261 Dubna, 1992.
16.
D.
Borthwick
, S.
Klimek
, A.
Lesniewski
, and M.
Rinaldi
, Commun. Math. Phys.
153
, 49
(1993
).17.
18.
19.
20.
21.
22.
S. Saunders, in The Philosophy of Vacuum, edited by S. Saunders and H. R. Brown (Oxford University, Oxford, 1991).
23.
B. Thaller, The Dirac Equation (Springer, Berlin, 1992).
24.
25.
26.
L. Alvarez-Gaumé and M. A. Vázquez-Mozo, “Topics in String Theory and Quantum Gravity,” lectures delivered at Les Houches Summer School, FTUAM-92/38 and CERN-TH-6736/92 preprint, Geneva, 1992.
27.
28.
29.
G. Scharf, Finite Quantum Electrodynamics (Springer, Berlin, 1989).
30.
31.
N. N. Bogoliubov and D. V. Shirkov, Introduction to the Theory of Quantized Fields, 3rd ed. (Wiley, New York, 1980).
32.
W. Dittrich and M. Reuter, Effective Lagrangians in Quantum Electrodynamics (Springer, Berlin, 1985).
This content is only available via PDF.
© 1994 American Institute of Physics.
1994
American Institute of Physics
You do not currently have access to this content.