Using the inverse strong symmetry of the Korteweg–de Vries (KdV) equation on the trivial symmetry and τ0 symmetry, one gets four new sets of symmetries of the KdV equation. These symmetries are expressed explicitly by the multi‐integrations of the Jost function of the KdV equation and constitute an infinite dimensional Lie algebra together with two hierarchies of the known symmetries. Contrary to the general belief, the time‐independent symmetry groups of the KdV and mKdV equations are non‐Abelian and the infinite dimensional Lie algebras of the KdV and mKdV equations are nonisomorphic though two equations are related by the Miura transformation. Starting from these sets of symmetries, four hierarchies of the integrodifferential KdV equations, which can be solved by the Schrödinger inverse scattering transformation method, are obtained. Some of these hierarchies enjoy a common strong symmetry and/or same local conserved densities.

1.
R. M.
Miura
,
J. Math. Phys.
9
,
1202
;
1204
(
1968
).
2.
P. J.
Ozlver
,
Math. Proc. Cambridge Philos. Soc.
88
,
71
(
1980
);
A. S.
Fokas
and
B.
Fuchssteiner
,
Phys. Lett. A
86
,
841
(
1981
);
B.
Fuchssteiner
,
Prog. Theor. Phys.
70
,
1508
(
1983
);
H. M. M. Ten Eikelder, Symmetries for Dynamical and Hamiltonian Systems CWI tract 17 (CWI, Amsterdam 1985);
Topics in Soliton Theory and Exactly Solvable Nonlinear Equations, edited by M. Ablowitz, B. Fuchssteiner, and M. Kruskal (World Scientific, Singapore, 1987);
H. H.
Chen
,
Y. C.
Lee
, and
J. E.
Lin
, Advances in Nonlinear Waves, edited by L. Debnath (Pitman Advanced, Boston, MA, 1982), Vol. II, p. 233; Y-s Li and G-c Zhu,
J. Phys. A
19
,
1713
(
1986
).
3.
H. H.
Chen
,
Y. C.
Lee
, and
J. E.
Lin
,
Phys. Lett. A
91
,
381
(
1983
);
H. H.
Chen
,
Y. C.
Lee
, and
J. E.
Lin
,
Physica D
26
,
165
(
1987
);
G. Z.
Tu
,
J. Phys. A
21
,
1951
(
1988
).
4.
W-x
Ma
,
J. Phys. A
23
,
2707
(
1990
).
5.
C-h Gu et al., Soliton Theory and its Application (Zhejiang Publishing House of Science and Technology, 1990), pp. 216–267.
6.
C.
Tian
and
Y-j
Zhang
,
J. Phys. A
23
,
2867
(
1990
);
C.
Tian
and
Y-j
Zhang
,
J. Math. Phys.
31
,
2150
(
1990
).
7.
B.
Fuchssteiner
,
Nonlinear Analysis TMA
3
,
849
(
1979
).
8.
B.
Fuchssteiner
,
Prog. Theor. Phys.
65
,
861
(
1981
).
9.
J. M.
Verosky
,
J. Math. Phys.
32
,
1733
(
1991
).
10.
K. M.
Case
and
A. M.
Roos
,
J. Math. Phys.
23
,
392
(
1982
).
11.
S-y
Lou
,
J. Math. Phys.
35
,
2336
(
1994
).
12.
S-y
Lou
,
Phys. Lett. B
302
,
265
(
1993
).
13.
S.
Carillo
and
B.
Fuchssteiner
,
J. Math. Phys.
30
,
1606
(
1989
);
S-y
Lou
,
Phys. Lett. A
181
,
13
(
1993
).
This content is only available via PDF.
You do not currently have access to this content.