The use of a biorthogonal basis for continuous wavelet transformations is explored, thus relaxing the so‐called admissibility condition on the analyzing wavelet. As an application, the eigenvalues and corresponding radial eigenfunctions of the Hamiltonian of relativistic hydrogen‐like atoms are determined.

1.
Y. Meyer, “Ondelettes et applications,” CEREMADE-Institute Universitaire de France, 1992.
2.
I. Daubechies, “Ten lectures on wavelets,” CBM-NSF Regional Conference Series in Applied Math. SIAM, 1992.
3.
Wavelets: A Tutorial in Theory and Applications, edited by C. K. Chui (Academic, New York, 1992).
4.
T. Paul, Ondelettes et Mecanique Quantique, doctoral thesis, Université d’ Aix-Marseille II, 1985.
5.
A.
Grossmann
,
J.
Morlet
, and
T.
Paul
,
J. Math. Phys.
26
,
2473
(
1985
);
A.
Grossmann
,
J.
Morlet
, and
T.
Paul
, II
Ann. Inst. H. Poincaré
45
,
293
(
1985
).
6.
A.
Cohen
,
I.
Daubechies
, and
J. C.
Feauveau
,
Commum. Pure Appl. Math.
45
,
485
(
1992
).
7.
A. Cohen, Biorthogonal Wavelets in Wavelets and Applications (Academic, New York, 1992).
8.
Ph.
Tchamitchian
,
Rev. Mat. Iberoam.
3
,
163
(
1987
).
9.
M.
Holschneider
and
Ph.
Tchamitchian
,
Lecture Notes in Mathematics
1438
,
102
(
1990
).
10.
M. Holschneider, “Inverse Radon Transforms Through Inverse Wavelet Transforms,” CPT preprint, Marseille, 1990.
11.
V. B. Berestetski, E. M. Lifshitz, and L. P. Pitaevski, Teoría Cuántica Relativista in Curso de Fisica Teórica Vol. 4 (Reverté, Barcelona, 1971).
This content is only available via PDF.
You do not currently have access to this content.