The complete scheme of the application of one‐ and two‐dimensional subspaces and the subgroups method to five‐dimensional gravity with a G3 group of motion are presented here in space–time and in potential space formalisms. From this method one obtains the Kramer, Belinsky–Ruffini, Dobiasch–Maison, Clément, Gross–Perry–Sorkin solutions, etc., as special cases.
REFERENCES
1.
2.
3.
M. J.
Duff
, B. E. W.
Nilsson
, and C. N.
Pope
, Phys. Rep.
130
, 1
(1986
).4.
5.
T. Matos and A. Nieto, Proceedings of Tercer Taller de Particulas y Campos, Morelia, Mich., 1991 (Rev. Mex. Fis. Suplemento, 1993).
6.
E. Schmutzer, Proceedings GR9, edited by E. Schmutzer (Cambridge University, Cambridge, 1982), p. 39.
7.
Y. M.
Cho
and D. H.
Park
, J. Math. Phys.
31
, 695
(1990
), and references therein.8.
9.
10.
11.
12.
G. Neugebauer, Doctor in Science Thesis, Habilitationsschrift, 1969.
13.
14.
15.
16.
17.
L. L. Chau, Geometrical Integrability and Equations of Motion in Physics: A Unifying View, University of California preprint UCD-87-38, 1987.
18.
D.
Kramer
, G.
Neugebauer
, and T.
Matos
, J. Math. Phys.
32
, 2727
(1991
).19.
20.
T. Matos and J. Plebañsky (to be published).
21.
22.
23.
24.
T.
Matos
, G.
Rodríguez
, and R.
Becerril
, J. Math. Phys.
33
, 3521
(1992
).25.
26.
G. Neugebauer and D. Kramer, Stationary Axisymmetric Einstein-Maxwell fields generated by Bäcklung transformations, preprint, Jena Universität, Germany 1990.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
R. Becerril and T. Matos, Proceedings of SILARG VII, edited by J. C. D’Olivo et al. (World Scientific, Singapore, 1991);
40.
41.
42.
43.
D. Kramer, H. Stephani, M. MacCallum, and E. Herlt, Exact Solutions of Einstein’s Field Equations (VEB-Deutscher Verlag der Wissenschaften, Berlin, 1980), Chap. 30.
44.
45.
This content is only available via PDF.
© 1994 American Institute of Physics.
1994
American Institute of Physics
You do not currently have access to this content.