The complete scheme of the application of one‐ and two‐dimensional subspaces and the subgroups method to five‐dimensional gravity with a G3 group of motion are presented here in space–time and in potential space formalisms. From this method one obtains the Kramer, Belinsky–Ruffini, Dobiasch–Maison, Clément, Gross–Perry–Sorkin solutions, etc., as special cases.

1.
Th.
Kaluza
,
Sitzungsber. Preuss. Akad. Wiss. Phys. Math K
1
,
966
(
1921
);
O.
Klein
,
Z. Phys.
37
,
895
(
1926
).
2.
A.
Trautman
,
Rep. Math. Phys.
1
,
29
(
1970
).
3.
D.
Bailin
and
A.
Love
,
Rep. Prog. Phys.
50
,
1087
(
1987
);
M. J.
Duff
,
B. E. W.
Nilsson
, and
C. N.
Pope
,
Phys. Rep.
130
,
1
(
1986
).
4.
Y. M.
Cho
,
J. Math. Phys.
16
,
2029
(
1975
).
5.
T. Matos and A. Nieto, Proceedings of Tercer Taller de Particulas y Campos, Morelia, Mich., 1991 (Rev. Mex. Fis. Suplemento, 1993).
6.
E. Schmutzer, Proceedings GR9, edited by E. Schmutzer (Cambridge University, Cambridge, 1982), p. 39.
7.
Y. M.
Cho
and
D. H.
Park
,
J. Math. Phys.
31
,
695
(
1990
), and references therein.
8.
F. J.
Ernst
,
Phys. Rev.
167
,
1175
(
1968
).
9.
Y. M.
Cho
,
Phys. Rev. Lett.
68
,
3133
(
1992
).
10.
T.
Matos
,
Rev. Mex. Fis.
35
,
208
(
1989
).
11.
V.
Belinsky
and
R.
Ruffini
,
Phys. Lett. B
89
,
195
(
1980
).
12.
G. Neugebauer, Doctor in Science Thesis, Habilitationsschrift, 1969.
13.
D.
Maison.
Gen. Relativ. Gravit.
10
,
717
(
1979
).
14.
T.
Matos
,
Astron. Nachr.
307
,
317
(
1986
).
15.
T.
Matos.
Gen. Relativ. Gravit.
19
,
481
(
1987
).
16.
T.
Matos
,
Phys. Lett. A
131
,
423
(
1988
).
17.
L. L. Chau, Geometrical Integrability and Equations of Motion in Physics: A Unifying View, University of California preprint UCD-87-38, 1987.
18.
D.
Kramer
,
G.
Neugebauer
, and
T.
Matos
,
J. Math. Phys.
32
,
2727
(
1991
).
19.
T.
Matos
and
R.
Becerril
,
Rev. Mex. Fis.
38
,
69
(
1992
).
20.
T. Matos and J. Plebañsky (to be published).
21.
C. W.
Misner
,
Phys. Rev. D
18
,
4510
(
1973
).
22.
G.
Neugebauer
and
D.
Kramer
,
Ann Phys. (Leipzig)
24
,
62
(
1969
).
23.
T.
Matos
and
G.
Rodríguez
,
Nuovo Cimento B
107
,
519
(
1992
).
24.
T.
Matos
,
G.
Rodríguez
, and
R.
Becerril
,
J. Math. Phys.
33
,
3521
(
1992
).
25.
A.
Tomimatsu
and
H.
Sato
,
Prog. Theor. Phys.
50
,
95
(
1973
).
26.
G. Neugebauer and D. Kramer, Stationary Axisymmetric Einstein-Maxwell fields generated by Bäcklung transformations, preprint, Jena Universität, Germany 1990.
27.
Y.
Nakamura
,
J. Math. Phys.
24
,
606
(
1983
).
28.
G.
Clément
,
Gen. Relativ. Gravit.
18
,
861
(
1986
).
29.
T.
Matos
,
Ann. Phys. (Leipzig)
46
,
462
(
1989
).
30.
G.
Clément
,
Gen. Relativ. Gravit.
18
,
137
(
1986
).
31.
R.
Becerril
and
T.
Matos
,
Phys. Rev. D
46
,
1540
(
1992
).
32.
O.
Heckmann
,
P.
Jordan
, and
W.
Fricke.
Astrophys.
28
,
113
(
1951
).
33.
A.
Kuühnel
and
E.
Schmutzer
,
Ann Phys. (Leipzig)
24
,
243
(
1969
).
34.
G.
Neugebauer
,
Wiss. Z.
Friedrich-Schiller-Univ.
,
Jena-Math. Nat. R
21
,
1
(
1972
).
35.
D.
Kramer
,
Acta Phys. Pol. B
2
,
807
(
1971
).
36.
V.
Belinsky
and
R.
Ruffini
,
Phys. Lett. B
89
,
195
(
1980
).
37.
P.
Dobiasch
and
D.
Maison
,
Gen. Relativ. Gravit.
14
,
231
(
1982
).
38.
A.
Chodos
and
S.
Detweiler
,
Gen. Relativ. Gravit.
14
,
879
(
1982
).
39.
R. Becerril and T. Matos, Proceedings of SILARG VII, edited by J. C. D’Olivo et al. (World Scientific, Singapore, 1991);
R.
Becerril
and
T.
Matos
,
Gen. Relativ. Gravit.
24
,
465
(
1992
).
40.
D. J.
Gross
and
M. J.
Perry
,
Nucl. Phys. B
226
,
29
(
1983
);
R. D.
Sorkin
,
Phys. Rev. Lett.
51
,
87
(
1983
).
41.
T.
Matos
,
Phys. Rev. D
38
,
3008
(
1988
).
42.
K. D.
Krori
and
J. C.
Sarmah
,
Can. J. Phys.
68
,
649
(
1990
).
43.
D. Kramer, H. Stephani, M. MacCallum, and E. Herlt, Exact Solutions of Einstein’s Field Equations (VEB-Deutscher Verlag der Wissenschaften, Berlin, 1980), Chap. 30.
44.
G.
Clément
,
Phys. Lett. A
118
,
11
(
1986
).
45.
R.
Becerril
and
T.
Matos
,
Phys. Rev. D
41
,
1895
(
1990
).
This content is only available via PDF.
You do not currently have access to this content.