An explicit construction of the BRST symmetry is presented in the Hamiltonian approach. The construction is based on the splitting homotopy and the transference problem.

1.
M. Henneaux and C. Teitelboim, Quantization of Gauge Systems (Princeton University, Princeton, NJ, 1992).
2.
M.
Henneaux
and
C.
Teitelboim
,
Commun. Math. Phys.
115
,
213
(
1988
).
3.
J.
Fisch
,
M.
Henneaux
,
J.
Stasheff
, and
C.
Teitelboim
,
Commun. Math. Phys.
120
,
379
(
1989
).
4.
J.
Stasheff
,
Bull. Am. Math. Soc.
19
,
287
(
1988
).
5.
J. Stasheff, Homological Reduction of Constrained Poisson Algebra (preprint 1989).
6.
J. M.
Figueroa-O’Farril
and
T.
Kimura
,
Commun. Math. Phys.
136
,
209
(
1991
).
7.
J. M.
Figueroa-O’Farril
,
Commun. Math. Phys.
127
,
181
(
1990
).
8.
M.
Henneaux
,
Phys. Rep.
126
,
1
(
1985
).
9.
A. D.
Browning
and
D.
Mc Mullan
,
J. Math. Phys.
28
,
438
(
1987
).
10.
V. K. A. M.
Gugenheim
, II
,
J. Math.
16
,
398
(
1972
).
11.
V. K. A. M.
Gugenheim
,
L.
Lambe
, and
J.
Stasheff
, II
,
J. Math.
35
,
357
(
1991
).
12.
D. W.
Barnes
and
L.
Lambe
,
Proc. Am. Math. Soc.
112
,
881
(
1991
).
This content is only available via PDF.
You do not currently have access to this content.