The Kaup–Broer hierarchy can be considered as a certain reduction of the KP hierarchy. Upon introducing the τ‐function the Kaup–Broer system can be formulated in trilinear form giving rise to Wronskian solutions. In this paper several odes of the Painlevé type obtained through reductions of the Kaup–Broer system are considered. Those odes take a trilinear form which allows a linearization.
REFERENCES
1.
2.
3.
4.
5.
J. Satsuma, J. Matsukidaira, and K. Kajiwara, in Solitons and Chaos, edited by I. Antoniou and F. J. Lambert (Springer-Verlag, Berlin, 1991), p. 264.
6.
J. Hietarinta, K. Kajiwara, J. Matsukidaira, and J. Satsuma, in Nonlinear Evolution Equations and Dynamical Systems, edited by M. Boiti, L. Martina, and F. Pempinelli (World Scientific, Singapore, 1992), p. 30.
7.
J.
Satsuma
, K.
Kajiwara
, J.
Matsukidaira
, and J.
Hietarinta
, J. Phys. Soc. Jpn.
9
, 3096
(1992
).8.
9.
H. T. Davis, Introduction to nonlinear differential and integral equations (Dover, New York, 1962).
10.
E. L. Ince, Ordinary differential equations (Dover, New York, 1956).
11.
Y.
Ohta
, J.
Satsuma
, D.
Takahashi
, and T.
Tokihiro
, Prog. Theor. Phys. Suppl.
94
, 219
(1988
).12.
E. Kamke, Differentialgleichungen, Lösungsmethoden und Lösungen (B. G. Teubner, Stuttgart, 1977).
13.
L. A. Dikii, Soliton quations and Hamiltonian systems. Advanced series in mathematical physics, Vol. 12 (World Scientific, Singapore, 1991).
14.
15.
16.
B.
Xu
, 9
, 355
(1993
).17.
18.
19.
20.
21.
Y. Cheng, W. Strampp, and B. Zhang, “Constraints of the KP hierarchy and multilinear forms,” Preprint, Kassel (1993), to appear in Commun. Math. Phys.
This content is only available via PDF.
© 1994 American Institute of Physics.
1994
American Institute of Physics
You do not currently have access to this content.