Identification of the hierarchy of Calogero–Moser dynamical systems with the dynamical systems of poles of certain solutions to the KP hierarchy is achieved.

1.
H.
Airault
,
H. P.
McKean
, and
J. K.
Moser
, “
Rational and elliptic solutions of the Korteweg-de Vries equation and a related many-body problem
,”
Commun. Pure Appl. Math.
30
,
95
148
(
1977
).
2.
F.
Calogero
, “
Solution of the one-dimensional N-body problems with quadratic and/or inversely quadratic pair potentials
,”
J. Math. Phys.
12
,
419
436
(
1971
).
3.
F.
Calogero
, “
Exactly solvable one-dimensional many-body problems
,”
Lett. Nuovo Cimento
13
,
411
416
(
1975
).
4.
F.
Calogero
, “
On a functional equation connected with integrable many-body problems
,”
Lett. Nuovo Cimento
16
,
77
80
(
1976
).
5.
I.
Krichever
, “
Rational solutions of Kadomtsev-Petviashvili equation and integrable systems of n particles on a line
,”
Funct. Anal. Appl.
12
,
59
61
(
1978
).
6.
G.
Segal
and
G.
Wilson
, “
Loop groups and equations of KdV type
,”
IHES Publ. Math.
61
,
5
65
(
1985
).
7.
M.
Adler
, “
Some finite dimensional integrable systems and their scattering behavior
,”
Commun. Math. Phys.
55
,
195
230
(
1977
).
8.
I. M.
Krichever
, “
Methods of algebraic geometry in the theory of nonlinear equations
,”
Russ. Math. Surv.
32
,
185
213
(
1977
).
9.
D. Mumford, “An algebro-geometric construction of commuting operators and of solutions to the Toda lattice equation, Korteweg-de Vries equation and related nonlinear equations,” in Proceedings Int. Symp. Algebraic Geometry, Kyoto (1977) (Kinokuniya Book Store, Tokyo, 1978), pp. 115–153.
10.
T.
Shiota
, “
Characterization of Jacobian varieties in terms of soliton equations
,”
Invent. Math.
83
,
333
382
(
1986
).
11.
I.
Krichever
, “
Elliptic solutions of the Kadomtsev-Petviashvili equation and integrable systems of particles
,”
Funct. Anal. Appl.
14
,
282
290
(
1980
).
12.
A. Treibich and J.-L. Verdier, “Solitons elliptique,” in The Grothendieck Festschrift, edited by P. Cartier et al., (Birkhäuser, Boston, 1990), Vol. III, pp. 437–480.
13.
A. Treibich and J.-L. Verdier, “Variétés de Krichever des solitons elliptiques de KP,” in Proceedings of the Indo-French Conference on Geometry, edited by S. Ramanan and A. Beauville (Hindustan Book Agency, to appear), pp. 187–232.
14.
G.
Wilson
, “
Bispectral commutative ordinary differential operators
,”
J. reine angew. Math.
442
,
177
204
(
1993
).
15.
A. Kasman, “Bispectral KP solutions and linearization of Calogero-Moser particle systems (preprint, 1994).
16.
E. Date, M. Jimbo, M. Kashiwara, and T. Miwa, “Transformation groups for soliton equations,” in Proceedings RIMS Symp. Non-linear integrable systems-classical theory and quantum theory (Kyoto 1981) (World Scientific, Singapore, 1983), pp. 39–119.
This content is only available via PDF.
You do not currently have access to this content.