A new definition of the entropy of a given dynamical system and of an instrument describing the measurement process is proposed within the operational approach to quantum mechanics. It generalizes other definitions of entropy, in both the classical and quantum cases. The Kolmogorov–Sinai (KS) entropy is obtained for a classical system and the sharp measurement instrument. For a quantum system and a coherent states instrument, a new quantity, coherent states entropy, is defined. It may be used to measure chaos in quantum mechanics. The following correspondence principle is proved: the upper limit of the coherent states entropy of a quantum map as ℏ→0 is less than or equal to the KS‐entropy of the corresponding classical map. ‘‘Chaosumpiresits, AndbydecisionmoreimbroilsthefrayBywhichhereigns: nexthimhigharbiterChancegovernsall.’’ JohnMilton, ParadiseLost, BookII

1.
M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer-Verlag, Berlin, 1991).
2.
F. Haake, Quantum Signatures of Chaos (Springer-Verlag, Berlin, 1991).
3.
M. C.
Gutzwiller
, “
Quantum chaos
,rdquo;
Sc. Amer.
1
,
26
(
1992
).
4.
J. Ford, “Quantum chaos: is there any?,” in Directions in Chaos, Vol. II, edited by B.-L. Hao (World Scientific, Singapore, 1988), pp. 129–147.
5.
J. Ford, “What is chaos, that we should be mindful of it?,” in The New Physics, edited by P. Davies (Cambridge U.P., Cambridge, 1989), pp. 348–372.
6.
J.
Ford
,
G.
Mantica
, and
G. H.
Ristow
, “
The Arnold cat: Failure of the correspondence principle
,”
Phys. D
50
,
493
(
1991
).
7.
J.
Ford
and
G.
Mantica
, “
Does quantum mechanics obey the correspondence principle? Is it complete?
,”
Am. J. Phys.
60
,
1086
(
1992
).
8.
J.
Ford
and
M.
Ilg
, “
Eigenfunctions, eigenvalues and time evolution of finite, bounded, undriven quantum systems are not chaotic
,”
Phys. Rev. A
45
,
6165
(
1992
).
9.
J. Ford, “A complex world: can we cope?,” to appear in Courants, Amers, Écueils, en Microphysique, edited by G. Lochak and P. Lochak (Foundation Louis de Broigle, Paris, 1993), pp. 157–166.
10.
G. Mantica and J. Ford, “On the completeness of the classical limit of quantum mechanics,” in Quantum Chaos—Quantum Measurement, edited by P. Cvitanovič, I. Percival, and A. Wirzba (Kluwer, Dordrecht, 1992), pp. 241–248.
11.
B.
Eckhardt
, “
Quantum mechanics of classically non-integrable systems
,”
Phys. Rep.
163
,
205
(
1988
).
12.
G. Casati and B. V. Chirikov, “The legacy of chaos in quantum mechanics,” in Quantum Chaos, edited by G. Casati and B. V. Chirikov (Cambridge University, Cambridge, 1994).
13.
D.
D̈rr
,
S.
Goldstein
, and
N.
Zanghi
, “
Quantum chaos, classical randomness, and Bohmian mechanics
,”
J. Stat. Phys.
68
,
259
(
1992
).
14.
P. R. Holland, The Quantum Theory of Motion. An account of the de Broigle-Bohm causal interpretation of quantum mechanics (Cambridge U.P., Cambridge, 1993).
15.
R. S.
Ingarden
and
K.
Urbanik
, “
Quantum informational thermodynamics
,”
Acta Phys. Pol.
21
,
281
(
1962
).
16.
A.
Connes
and
E.
Sto/rmer
, “
Entropy of automorphisms of II1 von Neumann algebras
,”
Acta Math.
134
,
289
(
1975
).
17.
A.
Wehrl
, “
General properties of entropy
,”
Rev. Mod. Phys.
50
,
221
(
1978
).
18.
R.
Kosloff
and
S. A.
Rice
, “
The influence of quantization on the onset of chaos in Hamiltonian systems: The Kolmogorov entropy interpretation
,”
J. Chem. Phys.
74
,
1340
(
1981
).
19.
R.
Kosloff
and
S. A.
Rice
, “
Is the dynamical chaos the same phenomenon in classical and quantum mechanical systems?
,”
J. Phys. Chem.
86
,
2153
(
1982
).
20.
P.
Pechukas
, “
Kolmogorov entropy and ‘quantum chaos
,’”
J. Phys. Chem.
86
,
2239
(
1982
).
21.
J. W.
Helton
and
M.
Tabor
, “
On classical and quantal Kolmogorov entropies
,”
J. Phys. A
18
,
2743
(
1985
).
22.
G. Lindblad, “Quantum ergodicity and chaos,” in Fundamental Aspects of Quantum Theory, edited by V. Gorini and A. Frigerio (Plenum, New York, 1986), pp. 199–208.
23.
A.
Connes
,
H.
Narnhofer
, and
W.
Thirring
, “
Dynamical entropy of C* algebras and von Neumann algebras
,”
Commun. Math. Phys.
112
,
691
(
1987
).
24.
H. Narnhofer, “Dynamical entropy in quantum theory,” preprint UWThPh-1988-27, Vienna (1988).
25.
M. H.
Partovi
, “
Entropic formulation of chaos for quantum dynamics
,”
Phys. Lett. A
151
,
389
(
1990
).
26.
T. Hudetz, “Algebraic topological entropy,” in Information Dynamics, edited by H. Almanspacher and H. Scheingraber (Plenum, New York, 1991), pp. 27–41.
27.
G. Lindblad, “Quantum entropy and quantum measurement,” in Quantum Aspects of Optical Communication (Paris 1990), edited by C. Bendjaballah, O. Hirota, and S. Reynaud (Springer-Verlag, Berlin, 1991), pp. 71–80.
28.
W. A. Majewski, “On the entropic properties of quantum dynamical systems,” in Proceedings of XXVII Winter School of Theoretical Physics Karpacz 1991: Nonlinear Fields, edited by P. Garbaczewski and Z. Popowicz (World Scientific, Singapore, 1991), pp. 675–681.
29.
A.
Wehrl
, “
The many facets of entropy
,”
Rep. Math. Phys.
30
,
119
(
1991
).
30.
C.
Beck
and
D.
Graudenz
, “
Symbolic dynamics of successive quantum-mechanical measurement
,”
Phys. Rev. A
46
,
6265
(
1992
).
31.
P. Gaspard, “Dynamical chaos and many-body quantum systems,” in Quantum Chaos—Quantum Measurement, edited P. Cvitanovič, I. Percival, and A. Wirzba (Kluwer, Dordrecht, 1992), pp. 19–42.
32.
J.-L.
Sauvageot
and
J.-P.
Thouvenot
, “
Une nouvelle définition de l’entropie dynamique des systèmes non commutatifs
,”
Commun. Math. Phys.
145
,
411
(
1992
).
33.
J. J.
Halliwell
, “
Quantum-mechanical histories and the uncertainty principle: Information—theoretic inequalities
,”
Phys. Rev. D
48
,
2739
(
1993
).
34.
T. Hudetz, “Quantum topological entropy: first steps of a “pedestrian” approach,” in Quantum Probability and Related Topics, Vol. VIII (World Scientific, Singapore, 1993), pp. 237–261.
35.
P. Gaspard, “Comment on the origin of dynamical randomness in quantum systems,” in Proceedings of 1993 Yukawa Int. Seminar: “Quantum and Chaos: How incompatible?” (in press).
36.
G.
Lindblad
, “
Determinism and randomness in quantum dynamics
,”
J. Phys. A
26
,
7193
(
1993
).
37.
G. Lindblad, “Decoherence properties of finite quantum systems,” preprint TRITA-TFY-93-9, Stockholm (1993).
38.
M. Ohya and D. Petz, Quantum Entropy and Its Use (Springer-Verlag, New York, 1993).
39.
R.
Alicki
and
M.
Fannes
, “
Defining quantum dynamical entropy
,”
Lett. Math. Phys.
32
,
75
(
1994
).
40.
M.
Ozawa
, “
Quantum measuring processes of continuous observables
,”
J. Math. Phys.
25
,
79
(
1984
).
41.
P.
Bush
,
M.
Grabowski
, and
P. J.
Lahti
, “
Some remarks on effects, operations and unsharp quantum measurements
,”
Found. Phys. Lett.
2
,
331
(
1989
).
42.
F. E.
Schroeck
, Jr.
, “
Coexistence of observables
,”
Int. J. Theor. Phys.
28
,
247
(
1989
).
43.
Y. Kifer, Random Perturbations of Dynamical Systems (Birkhäuser, Boston, 1988).
44.
C. M.
Edwards
, “
The operational approach to algebraic quantum theory I
,”
Commun. Math. Phys.
16
,
207
(
1970
).
45.
E. B.
Davies
and
J. T.
Lewis
, “
An operational approach to quantum probability
,”
Commun. Math. Phys.
17
,
239
(
1970
).
46.
E. B. Davies, Quantum Theory of Open Systems (Academic, London, 1976).
47.
S. Gudder, Stochastic Methods in Quantum Mechanics (Elsevier-North-Holland, New York, 1979).
48.
P.
Bush
,
G.
Cassinelli
, and
P. J.
Lahti
, “
On the quantum theory of sequential measurements
,”
Found. Phys.
20
,
757
(
1990
).
49.
P. Bush, P. J. Lahti, and P. Mittelstaedt, The Quantum Theory of Measurement (Springer-Verlag, Berlin, 1991).
50.
J. R. Klauder, “Are coherent states the natural language of quantum theory?,” in Fundamental Aspects of Quantum Theory, edited by V. Gorini and A. Frigerio (Plenum, New York, 1986), pp. 1–12.
51.
J. R. Klauder and B. Skagerstam, Coherent States (World Scientific, Singapore, 1985).
52.
A. Perelomov, Generalized Coherent States and Their Applications (Springer-Verlag, Berlin, 1986).
53.
K. T. Hecht, The Vector Coherent State Method and Its Application to Problems of Higher Symmetry, Lecture Notes in Physics 290 (Springer-Verlag, Berlin, 1987).
54.
W.-M.
Zhang
,
D. H.
Feng
, and
R.
Gilmore
, “
Coherent states: Theory and some applications
,”
Rev. Mod. Phys.
62
,
867
(
1990
).
55.
G.
Lüders
, “
Über die Zustandsänderung durch den Meβprozeβ
,”
Ann. Phys.
8
,
322
(
1951
).
56.
P.
Bush
and
P. J.
Lahti
, “
Some remarks on unsharp quantum measurements, quantum non-demolition, and all that
,”
Ann. Phys. (Leipzig)
47
,
369
(
1990
).
57.
K.
Husimi
, “
Some formal properties of the density matrix
,”
Proc. Phys. Math. Soc. Jpn.
22
,
264
(
1940
).
58.
S.
Stenholm
, “
Simultaneous measurement of conjugate variables
,”
Ann. Phys. (N.Y.)
218
,
233
(
1992
).
59.
K.
Takahashi
and
N.
Saitô
, “
Chaos and Husimi distribution function in quantum mechanics
,”
Phys. Rev. Lett.
55
,
645
(
1985
).
60.
K.
Takahashi
, “
Wigner and Husimi functions in quantum mechanics
,”
J. Phys. Soc. Jpn.
55
,
762
(
1986
).
61.
K.
Takahashi
, “
Chaos and time development in quantum wave packet in Husimi representation
,”
J. Phys. Soc. Jpn.
55
,
1443
(
1986
).
62.
G. J.
Milburn
, “
Quantum and classical Liouville dynamics of the anharmonic oscillator
,”
Phys. Rev. A
33
,
674
(
1986
).
63.
K.
Życzkowski
, “
Quantum chaotic system in generalized Husimi representation
,”
Phys. Rev. A
35
,
3546
(
1987
).
64.
P. Leboeuf and A. Voros, “Quantum nodal points as fingerprints of classical chaos,” in Quantum Chaos, edited by G. Casati and B. V. Chirikov (Cambridge University, Cambridge, 1994).
65.
F. E.
Schroeck
, Jr.
, “
On the entropic formulation of uncertainty for quantum mechanics
,”
J. Math. Phys.
30
,
2078
(
1989
).
66.
H.
Cycon
and
K.-E.
Hellwig
, “
Conditional expectations in generalized probability theory
,”
J. Math. Phys.
18
,
1154
(
1977
).
67.
M.
Ozawa
, “
Conditional probability and a posteriori states in quantum mechanics
,”
Publ. RIMS. Kyoto Univ.
21
,
279
(
1985
).
68.
M.
Ozawa
, “
Canonical approximate quantum measurements
,”
J. Math. Phys.
34
,
5596
(
1993
).
69.
A.
Barchielli
and
V. P.
Belavkin
, “
Measurements continuous in time and a posteriori states in quantum mechanics
,”
J. Phys. A
24
,
1495
(
1991
).
70.
M. D.
Srinivas
, “
Foundations of a quantum probability theory
,”
J. Math. Phys.
16
,
1672
(
1975
).
71.
E. P.
Wigner
, “
The problem of measurement
,”
Am. J. Phys.
31
,
6
(
1963
).
72.
T. Dittrich and R. Graham, “Quantum chaos,” in Instabilities and Nonequilibrium Structures II, edited by E. Tirapegui and D. Villaroel (Kluwer, Dordrecht, 1989), pp. 145–162.
73.
A. Lasota and M. C. Mackey, Probabilistic Properties of Deterministic Systems (Cambridge U.P., Cambridge, 1985).
74.
Y.
Kifer
, “
Entropy via random perturbations
,”
Trans. Am. Math. Soc.
282
,
589
(
1984
).
75.
A. Rényi, Probability Theory (Akadémiai Kiadó, Budapest, 1970).
76.
P. Walters, An Introduction to Ergodic Theory (Springer-Verlag, New York, 1982).
77.
E. B.
Stechel
, “
Quantum ergodicity and a quantum measure algebra
,”
J. Chem. Phys.
82
,
364
(
1985
).
78.
A. Peres, “Looking at the quantum world with classical eyes,” in Quantum Chaos—Quantum Measurement, edited by P. Cvitanovič, I. Percival, and A. Wirzba (Kluwer, Dordrecht, 1992), pp. 249–255.
79.
R. B.
Griffiths
, “
Consistent histories and the interpretation of quantum mechanics
,”
J. Stat. Phys.
36
,
219
(
1984
).
80.
M. Gell-Mann and J. B. Hartle, “Quantum mechanics in the light of quantum cosmology,” in Proceedings of the 3rd International Symposium Foundations of Quantum Mechanics in the Light of New Technology, edited by S. Kobayashi, H. Ezocoa, Y. Murayama, and S. Nomura (Phys. Soc. Japan, Tokyo, 1990), pp. 321–343.
81.
R.
Omnès
, “
Consistent interpretation of quantum mechanics
,”
Rev. Mod. Phys.
64
,
339
(
1992
).
82.
M.
Gell-Mann
and
J. B.
Hartle
, “
Classical equations for quantum systems
,”
Phys. Rev. D
47
,
3345
(
1993
).
83.
R. B.
Griffiths
, “
Consistent interpretation of quantum mechanics using quantum trajectories
,”
Phys. Rev. Lett.
70
,
2201
(
1993
).
84.
S.
Weigert
, “
The configurational quantum cat map
,”
Z. Phys. B
80
,
3
(
1990
).
85.
S.
Weigert
, “
Chaos and quantum-nondemolition measurements
,”
Phys. Rev. A
43
,
6597
(
1991
).
86.
S. Weigert, “Keeping track of chaos by quantum-nondemolition measurements,” in Quantum Chaos—Quantum Measurement, P. Cvitanovič, I. Percival, and A. Wirzba (Kluwer, Dordrecht, 1992), pp. 131–137.
87.
S.
Weigert
, “
Quantum chaos in the configurational quantum cat map
,”
Phys. Rev. A
48
,
1780
(
1993
).
88.
N. L.
Balazs
and
A.
Voros
, “
The quantized Baker’s transformation
,”
Ann. Phys. (N.Y.)
190
,
1
(
1989
).
89.
D. M.
Gitman
and
A. L.
Shelepin
, “
Coherent states of SU(N) groups
,”
J. Phys. A
26
,
313
(
1993
).
90.
C. C.
Martens
, “
Quantum qualitative dynamics
,”
J. Stat. Phys.
68
,
207
(
1992
).
91.
P.
Bush
and
F. E.
Schroeck
, Jr.
, “
On the reality of spin and helicity
,”
Found. Phys.
19
,
807
(
1989
).
92.
M. Kuś (private communication, 1990).
93.
H.
Frahm
and
H. J.
Mikeska
, “
Level statistics and stochasticity in a driven quantum system
,”
Z. Phys. B
65
,
249
(
1986
).
94.
K.
Nakamura
,
Y.
Okazaki
, and
A. R.
Bishop
, “
Periodically pulsed spin dynamics: scaling behavior of semiclassical wave functions
,”
Phys. Rev. Lett.
57
,
5
(
1986
).
95.
F.
Haake
,
M.
Kuś
, and
R.
Scharf
, “
Classical and quantum chaos for a kicked top
,”
Z. Phys. B
65
,
381
(
1987
).
96.
F.
Haake
,
H.
Wiedemann
, and
K.
Życzkowski
, “
Lyapunov exponent for quantum mechanics
,”
Ann. Phys.
1
,
531
(
1992
).
97.
W. Słomczyński and K. Życzkowski, Coherent states entropy of quantum measurements (to be published).
98.
Y.
Aharonov
,
P. G.
Bergman
, and
J. L.
Lebowitz
, “
Time symmetry in the quantum process of measurement
,”
Phys. Rev.
134
,
B1410
(
1964
).
99.
H. F.
Dowker
and
J. J.
Halliwell
, “
Quantum mechanics of history: The decoherence functional in quantum mechanics
,”
Phys. Rev. D
46
,
1580
(
1992
).
100.
R.
Omnès
, “
Logical reformulation of quantum mechanics. IV. Projectors in semiclassical physics
,”
J. Stat. Phys.
57
,
357
(
1989
).
101.
J. J.
Halliwell
, “
Smeared Wigner functions and quantum-mechanical histories
,”
Phys. Rev. D
46
,
1610
(
1992
).
102.
S. N. Ethier and T. G. Kurtz, Markov Processes. Characterization and Convergence (Wiley, New York, 1986).
103.
M. D.
Srinivas
, “
Quantum generalization of Kolmogorov entropy
,”
J. Math. Phys.
19
,
1952
(
1978
).
104.
G. Lindblad, “Dynamical entropy for quantum probability,” in Quantum Probability and Applications III, edited by L. Accardi and W. von Waldenfelds, Lecture Notes in Math. 1303, (Springer-Verlag, Berlin, 1988), pp. 183–191.
105.
R.
Vilela Mendes
, “
Sensitive dependence and entropy for quantum system
,”
J. Phys. A
24
,
4349
(
1991
).
106.
M. Brin and A. Katok, “On local entropy,” in Geometric Dynamics, edited by J. Palis, Jr., Lecture Notes in Math. 1007 (Springer-Verlag, Berlin, 1983), pp. 30–38.
This content is only available via PDF.
You do not currently have access to this content.