A variety of Lie algebras and certain classes of representations can be constructed using Grassmann variables regarded as Lorentz scalar coordinates belonging to an internal space. The generators are realized as combinations of multilinear products of the coordinates and derivative operators, while the representations emerge as antisymmetric polynomials in the variables and are thus severely restricted. The nature of these realizations and the interconnections between various subalgebras, for N independent complex anticommuting coordinates, is explored. The addition of such Grassmann coordinates to the usual spacetime manifold provides a natural superfield setting for a unified theory of symmetries of elementary particles. The particle content can be further restricted by imposing discrete symmetries (Lie algebra automorphisms). For the case N=5 some anomaly free choices of multiplets are derived through the imposition of specific superfield duality conditions.

1.
Th.
Kaluza
,
Sitz. Preuss. Akad. Wiss. Berlin. Math. Phys., K1
,
966
(
1921
);
O.
Klein
,
Z. Phys.
37
,
895
(
1926
). The developments from these papers through to the extension to supersymmetric theories are briefly reviewed with an extensive bibliography in Chap. 5 of Ref. 7 below.
2.
The bosonic string is comprehensively treated in the reviews of Superstring theory (Refs. 8 and 9) below.
3.
See, e.g., S. J. Gates, M. T. Grisaru, M. Rocek, and W. Siegel, Superspace or One Thousand and One Lessons in Supersymmetry (Benjamin, New York, 1983).
4.
P.
Fayet
and
S.
Ferrara
,
Phys. Rep. C
32
,
249
(
1977
);
H. P.
Nilles
,
Phys. Rep. C
110
,
1
(
1984
); ,
Z. Phys.
see also the reprint volumes by S. Ferrara, Supersymmetry (North-Holland, Amsterdam, World Scientific, Singapore, 1987).
5.
P.
van Nieuwenhuizen
,
Phys. Rep. C
68
(
1981
);
J. Wess and J. Bagger, Supersymmetry and Supergravity (Princeton University, Princeton, 1983);
P. C. West, Introduction to Supersymmetry and Supergravity (World Scientific, Singapore, 1986);
and the reprint volume by M. Jacob, Supersymmetry and Supergravity (North-Holland, Amsterdam, World Scientific, Singapore, 1986).
6.
M. J.
Duff
,
B. E. W.
Nilsson
, and
C. N.
Pope
,
Phys. Rep. C
130
,
1
(
1986
);
M. J. Duff, in Physics in Higher Dimensions, edited by T. Piran and S. Weinberg (World Scientific, Singapore, 1986).
7.
See the reprint volumes of A. Salam and E. Sezgin, Supergravities in Diverse Dimensions (North-Holland, Amsterdam, World Scientific, Singapore, 1989).
8.
M. Green, J. H. Schwarz, and E. Witten, Superstring Theory (Cambridge University, Cambridge, 1986).
9.
See the reprint volumes by J. H. Schwarz, Superstrings, the First 15 Years (World Scientific, Singapore, 1985).
10.
R.
Casalbuoni
and
R.
Gatto
,
Phys. Lett. B
88
,
306
(
1979
);
R.
Casalbuoni
and
R.
Gatto
,
90
,
81
(
1980
); ,
Phys. Rev. C
P. H.
Dondi
and
P. D.
Jarvis
,
Z. Phys. C
4
,
201
(
1980
);
R.
Delbourgo
and
R. B.
Zhang
,
Phys. Rev. D
38
,
2490
(
1988
);
P.
Ellicott
and
D. J.
Toms
,
Class. Quantum Gravit.
6
,
1033
(
1989
).
11.
R.
Delbourgo
,
Mod. Phys. Lett. A
4
,
1381
(
1989
);
R.
Delbourgo
and
M.
White
,
Mod. Phys. Lett. A
5
,
355
(
1990
); ,
Mod. Phys. Lett. A
R.
Delbourgo
,
L. M.
Jones
, and
M.
White
,
Phys. Rev. D
41
,
679
(
1990
).
12.
R.
Delbourgo
,
P. D.
Jarvis
, and
R. C.
Warner
,
Aust. J. Phys.
44
,
135
(
1991
).
13.
L.
Bonora
and
M.
Tonin
,
Phys. Lett. B
98
,
48
(
1981
);
R.
Delbourgo
and
P. D.
Jarvis
,
J. Phys. A
15
,
611
(
1982
).
14.
Y.
Ne’eman
,
Phys. Lett. B
81
,
190
(
1979
);
D. B.
Fairlie
,
Phys. Lett. B
82
,
97
(
1979
); ,
J. Phys. A
J. G.
Taylor
,
Phys. Lett. B
83
,
331
(
1979
); ,
J. Phys. A
P. H.
Dondi
and
P. D.
Jarvis
,
Phys. Lett. B
84
,
75
(
1979
).,
J. Phys. A
15.
P. D.
Jarvis
,
J. Math. Phys.
31
,
1783
(
1990
);
Y.
Ne’eman
and
S.
Sternberg
,
Proc. Natl. Acad. Sci. USA
87
,
7875
(
1990
);
A. Connes and J. Lott, “Particle Models and Noncommutative Geometry,” preprint IHES/P/90/23 (March 1990);
F.
Hussain
and
G.
Thompson
,
Phys. Lett. B
260
,
359
(
1991
);
R.
Coquereaux
,
Phys. Lett. B
261
,
449
(
1991
); ,
Phys. Lett. B
B. S.
Balakrishna
,
F.
Gursey
, and
K. C.
Wali
,
Phys. Rev. D
44
,
3313
(
1991
).
16.
This is sometimes referred to as the spinning string: See, for example, Sec. 6 of J. H. Schwarz, in Physics in Higher Dimensions, edited by T. Piran and S. Weinberg (World Scientific, Singapore, 1986) and the discussion in Chap. 4 of Ref. 8 above.
17.
O. Eyal, Techniques of Using Grassmann Variables for Realizing Some Algebras, Karlsruhe preprint KA-THEP-1990–3 (1990).
18.
R. Gilmore, Lie Groups, Lie Algebras, and some of their Applications (Wiley, New York, 1974).
19.
Parentheses around subscripts denote symmetrized indices A(ij)≡Aij+Aij, while square brackets denote antisymmetrization.
20.
F. A. Berezin, The Method of Second Quantization (Academic, New York, 1966);
B. DeWitt, Supermanifolds (Cambridge University, Cambridge, 1984).
21.
J. W.
van Holten
,
Nucl. Phys. B
339
,
158
(
1990
).
22.
Y. Choquet-Bruhat and C. DeWitt-Morette with M. Dillard-Bleick, Analysis, Manifolds, and Physics (North-Holland, Amsterdam, 1982);
T.
Eguchi
,
P. B.
Gilkey
, and
A. J.
Hanson
,
Phys. Rep. C
66
,
213
(
1980
).
23.
J. F. Cornwell, Group Theory in Physics (Academic, New York, 1984), Vol 2, Chap. 14;
F. R. Gantmacher, Theory of Matrices (Chelsea, New York, 1959), Vol. 1;
V. Kac, Infinite Dimensional Algebras (Cambridge University, Cambridge, 1990), Chap. 8.
24.
R. Slansky, in First Workshop on Grand Unification, edited by P. H. Frampton, S. L. Glashow, and A. Yildiz (Math Sci, Brookline, 1980).
25.
G. G. Ross, Grand Unified Theories (Benjamin-Cummings, Menlo Park, 1984);
Unification of the Fundamental Particle Interactions, edited by S. Ferrara, J. Ellis, and P. van Nieuwenhuizen (Plenum, New York, 1980).
26.
J.
Ellis
,
S.
Kelley
, and
D. V.
Nanopoulos
,
Phys. Lett. B
249
,
441
(
1990
);
U.
Amaldi
,
W.
de Boer
, and
H.
Fürstenau
,
Phys. Lett. B
260
,
447
(
1991
).
27.
R. C.
King
,
Nucl. Phys. B
185
,
133
(
1981
).
28.
R.
Delbourgo
and
R.
Roleda
,
Int. J. Mod. Phys. A
7
,
5213
(
1992
).
29.
V. G.
Kac
,
Ad. Math.
26
,
8
(
1977
).
30.
P. Ramond, in Supersymmetry in Physics, edited by V. A. Kostelecký and D. K. Campbell (North-Holland, Amsterdam, 1985).
31.
SCHUR 5.0. © Schur Software Associates (1990).
32.
SimpLie™ W. McKay, J. Patera, and D. Rand (CRM, Montreal, 1990).
This content is only available via PDF.
You do not currently have access to this content.