Starting with the SU(2)q⊗SU(2)q basis and using q‐CG coefficients the closest possible q deformation of the classical canonical Gelfand–Zetlin formalism is constructed explicitly for SO(4)q. Simple introduction of q brackets for each factor of the classical matrix elements, valid for SU(n)q, is shown to need significant and unexpected modifications for SO(n)q even when n=4. Contraction to E(3)q and continuation to SO(3,1)q are studied, making explicit the possibilities and the problems that arise. Periodic representations for q, a root of unity, are commented upon briefly.

1.
I. M. Gelfamd, R. A. Milnos, and Z. Ya. Shapiro, Representations of the Rotation and Lorentz Groups and their Applications (Pergamon, New York, 1963) (see the supplements of this book).
2.
A.
Chakrabarti
,
J. Math. Phys.
9
,
2087
(
1968
).
3.
A.
Chakrabarti
,
J. Math. Phys.
32
,
1227
(
1991
).
4.
D.
Arnaudon
and
A.
Chakrabarti
,
Commun. Math. Phys.
139
,
461
(
1991
);
D.
Arnaudon
and
A.
Chakrabarti
,
Phys. Lett. B
255
,
242
(
1991
).
5.
A. Chakrabarti (talk presented in WIGNER SYMP., Goslar 1991).
6.
D.
Arnaudon
and
A.
Chakrabarti
,
Commun. Math. Phys.
139
,
605
(
1991
);
D.
Arnaudon
and
A.
Chakrabarti
,
Phys. Lett. B
262
,
68
(
1991
).
7.
M.
Nomura
,
J. Math. Phys.
30
,
2397
(
1989
).
8.
N.
Reshetikhin
and
V. G.
Turaev
,
Invent. Math.
103
,
547
(
1991
).
9.
E.
Celeghini
,
R.
Giachetti
,
E.
Sorace
, and
M.
Tarlini
,
J. Math. Phys.
32
,
1159
(
1991
).
10.
P. Podler and S. L. Woronowics, Quantum deformation of the Lorentz group(Mittag-Leffler Institute Report No. 20, 1988).
11.
U.
Carow-Watamura
,
M.
Schlicker
,
M.
Scholl
, and
S.
Watamura
,
Int. J. Mod. Phys. A
6
,
3081
(
1991
).
12.
W. B.
Schmidke
,
J.
Wess
, and
B.
Zumino
,
Z. Phys. C
52
,
471
(
1991
).
13.
O. Ogievetsky, W. B. Schmidke, J. Wess, and B. Zumino,Six generators of q-deformed Lorentz generators(MPI-Ph/91-51).
14.
I. L. Egusquiza and A. J. Macfarlane, Spectral decomposition for the R Matrix of Uq(SU.(2))and fusion procedure(Preprint DAMTP/91-22).
15.
A. N. Kirillov and N. Yu. Resketikhin, Representations of the algebra of Uq(2), q-orthogonal polynomials and invariants of links (LOMI Preprint E-q-88).
This content is only available via PDF.
You do not currently have access to this content.