The recent result that there is no Bekenstein black hole at D≳4 is confirmed by the direct integration of the field equations of the self‐gravitating conformal scalar field. The case D=3 where the result turns out to be same is also solved. The curvature singularities of the obtained solutions are analyzed and it is shown that there do exist special (critical) space‐times which, however, are of the black hole type only at D=4.
REFERENCES
1.
2.
H. P.
Künzle
and A. K. M.
Masoud-ul-Alam
, J. Math. Phys.
31
, 928
(1990
).3.
D.
Garfinkle
, G. T.
Horowitz
, and A.
Strominger
, Phys. Rev. D
43
, 3140
(1991
).4.
5.
B. A.
Campbell
, N.
Kaloper
, and K. A.
Olive
, Phys. Lett. B
263
, 364
(1991
).6.
D. V. Galtsov and M. S. Volkov, Lisboa preprint IFM-27/91, December 1991.
7.
P. Bizon and T. Chmaj, Wien preprint UWThPh-1992-23, May 1992.
8.
G. W.
Gibbons
and K.
Maeda
, Nucl. Phys. B
298
, 741
(1988
), and references therein.9.
M. Bañados, C. Teitelboim, and J. Zanelli, preprint IASSNS-HEP-92/29, May 1992, and references therein.
10.
11.
12.
13.
14.
15.
16.
A. I.
Janis
, D. C.
Robinson
, and J.
Winicour
, Phys. Rev.
186
, 1847
(1969
).17.
N. D. Birrell and P. C. Davies, Quantum Fields in Curved Spaces (Cambridge University, Cambridge, 1982).
18.
D. A.
Konkowski
and T. M.
Helliwell
, Class. Quantum Gravit.
6
, 1847
(1989
).
This content is only available via PDF.
© 1993 American Institute of Physics.
1993
American Institute of Physics
You do not currently have access to this content.