Quantum matrices A(R) are known for every R matrix obeying the quantum Yang–Baxter equations. It is also known that these act on ‘‘vectors’’ given by the corresponding Zamalodchikov algebra. This interpretation is developed in detail, distinguishing between two forms of this algebra, V(R) (vectors) and V*(R) (covectors). A(R)→V(R21)⊗V*(R) is an algebra homomorphism (i.e., quantum matrices are realized by the tensor product of a quantum vector with a quantum covector), while the inner product of a quantum covector with a quantum vector transforms as a scaler. It is shown that if V(R) and V*(R) are endowed with the necessary braid statistics Ψ then their braided tensor‐product V(R)⊗_V*(R) is a realization of the braided matrices B(R) introduced previously, while their inner product leads to an invariant quantum trace. Introducing braid statistics in this way leads to a fully covariant quantum (braided) linear algebra. The braided groups obtained from B(R) act on themselves by conjugation in a way impossible for the quantum groups obtained from A(R).

1.
L. D.
Faddeev
,
N. Yu.
Reshetikhin
, and
L. A.
Takhtajan
,
Algebra i Analiz
1
(
1989
);
in Russian, translation in Leningrad Math. J. (1990).
2.
S.
Majid
,
Int. J. Mod. Phys. A
5
,
1
(
1990
).
3.
B. Zumino, Introduction to the differential geometry of quantum groups, in Proceedings Mathematical Physics X, Leipzig, 1991, edited by K. Schmüdgen (Springer-Verlag, Berlin, 1992), p. 20.
4.
S.
Majid
,
J. Math. Phys.
32
,
3246
(
1991
).
5.
V. G. Drinfeld, Quantum Groups, in Proceedings of the ICM, edited by A. Gleason (AMS, Rhode Island, 1987), pp. 798–820.
6.
S.
Majid
,
Lett. Math. Phys.
22
,
167
(
1991
).
7.
S.
Majid
,
Isr. J. Math.
72
,
133
(
1990
).
8.
S. Majid, Transmutation Theory and Rank for Quantum Braided Groups, Math. Proc. Cambridge Philos. Soc. (1991, to be published).
9.
S. Majid, Braided Matrix Structure of the Sklyanin Algebra and of the Quantum Lorentz Group, Preprint, DAMTP/92-10, 1992.
10.
Yu. I. Manin, Quantum Groups and Noncommutative Geometry, Technical report (Centre de Recherches Math, Montreal, 1988).
11.
A. Sudbery, J. Algebra (to be published).
12.
A. P.
Isaev
and
R. P.
Malik
,
Phys. Lett. B
280
,
219
(
1992
).
13.
S. Majid, Rank of Quantum Groups and Braided Groups in Dual Form, in Proceedings of the Euler Institute, St. Petersberg, 1990, Vol. 1510 of Lee. Notes, in Math. (Springer, New York).
14.
S. Majid, Braided Groups, J. Pure Appl. Algebra (1990, to be published).
15.
S. Majid, Anyonic Quantum Groups, in Proc. of 2nd Max Born Symposium, Wroclaw, Poland, 1992 (Kluwer, to be published).
16.
S. Majid, Cross Products by Braided Groups and Bosonization, J. Algebra (1991, to be published).
17.
E. E.
Demidov
,
Yu. I.
Manin
,
E. E.
Mukhin
, and
D. V.
Zhdanovich
,
Prog. Theor. Phys. Suppl.
102
,
203
(
1990
).
18.
M.
Takeuchi
,
Proc. Jpn. Acad.
66
,
112
(
1990
).
19.
M. L.
Ge
,
N. H.
Jing
, and
G. Q.
Liu
,
J. Phys. A
25
,
L799
(
1992
).
20.
S. Majid and M. J. Rodriguez-Plaza, Universal R-matrix for Nonstandard Quantum Group and Superization, Preprint, DAMTP/91-47, 1991.
21.
L. H. Kauffman and H. Saleur, Commun. Math. Phys. (to be published).
22.
S. Majid, Quantum Groups and Quantum Probability, in Proceedings of Quantum Probability and Related Topics VI, Trento, 1989 (World Scientific, Singapore), pp. 333–358.
23.
R. G.
Larson
and
J.
Towber
,
Commun. Algebra
19
,
3295
(
1991
).
24.
A. Joyal and R. Street, Braided Monoidal Categories, Mathematics Reports 86008, Macquarie University, 1986.
25.
D. I.
Gurevich
,
Leningrad Math. J.
2
,
801
(
1991
).
This content is only available via PDF.
You do not currently have access to this content.