Scale‐commensurate decay estimates inside the light cone for the solution of the Cauchy problem for the Klein–Gordon equation with a Daubechies wavelet as initial data were obtained. Similar estimates on the solution of the radiation problem with a space–time Daubechies wavelet as the source were derived.

1.
Y.
Meyer
,
Semin. Bourbaki
38
,
662
(
1985
).
2.
P.
Lemarié
,
J. Math. Pures Appl.
67
,
227
(
1988
).
3.
G.
Battle
,
Commun. Math. Phys.
110
,
601
(
1987
).
4.
I.
Daubechies
,
Commun. Pure Appl. Math.
41
,
906
(
1988
).
5.
G.
Battle
,
J. Math. Phys.
30
,
2195
(
1989
).
6.
G.
Battle
and
P.
Federbush
,
Ann. Phys.
142
,
95
(
1982
).
7.
G.
Battle
and
P.
Federbush
,
Commun. Math. Phys.
88
,
263
(
1983
).
8.
G.
Battle
and
P.
Federbush
,
Commun. Math. Phys.
109
,
417
(
1987
).
9.
G.
Battle
,
Commun. Math. Phys.
114
,
93
(
1988
).
10.
M. Reed and B. Simon, Methods of Modern Mathematical Physics, Fourier Analysis and Self-Adjointness, Vol. II (Academic, New York, 1975).
11.
M. Reed, Abstract Nonlinear Wave Equations, Lecture Notes in Mathematics No. 507 (Springer-Verlag, Berlin/Heidelberg/New York, 1976).
12.
J. Glimm and A. Jaffe, Quantum Physics: A Functional Integral Point of View (Springer-Verlag, New York, 1987).
This content is only available via PDF.
You do not currently have access to this content.