Tensor product decompositions of the N=2 superconformal algebras are examined to determine when they are finite or multiplicity‐free, using various combinatorial identities. Using similar techniques, branching rules for the winding subalgebras of the N=2 superconformal algebras are investigated.  

1.
M.
Baake
,
J. Math. Phys.
29
,
1753
(
1988
).
2.
M. R.
Bremner
,
Comm. Alg.
16
,
1513
(
1988
).
3.
M. R.
Bremner
,
Can. J. Math.
42
,
561
(
1990
).
4.
V. K.
Dobrev
,
Phys. Lett. B
186
,
43
(
1987
).
5.
W.
Boucher
,
D.
Friedan
, and
A.
Kent
,
Phys. Lett. B
172
,
316
(
1986
).
6.
Y.
Matsuo
,
Prog. Theor. Phys.
77
,
793
(
1987
).
7.
E.
Kiritsis
,
Int. J. Mod. Phys.
3
,
1871
(
1988
).
8.
See, for example, G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed. (Oxford University, Oxford, 1979).
9.
M. V.
Subbarao
and
M.
Vidyasagar
,
Proc. Am. Math. Soc.
26
,
23
(
1970
).
10.
B.
Feigin
and
E.
Frenkel
,
Phys. Lett. B
246
,
71
(
1990
), and references therein.
11.
V. G.
Kač
and
M.
Wakimoto
,
Acta Appl. Math.
21
,
3
(
1990
).
12.
T. H. Baker and P. D. Jarvis, University of Tasmania preprint utas-phys-91-07.
This content is only available via PDF.
You do not currently have access to this content.