On the assumption that the Riemannian curvature and its variation over space–time are small enough and using an explicit expression for the inertia tensor defined by Dixon in his approach to describe the dynamics of extended bodies in general relativity, a proof of the semidefinite negative signature of the inertia tensor is given. Also, a coordinate evolution equation for the inertia tensor of an isolated extended body moving on a reference three‐manifold is obtained.

1.
W. G. Dixon, in Isolated Gravitating Systems in General Relativity, Course 67 of E. Fermi School, Varenna, edited by J. Ehlers (North-Holland, Amsterdam, 1979), p. 156.
2.
R.
Schattner
,
Gen. Relativ. Gravit.
10
,
377
(
1979
).
3.
J.
Ehlers
and
E.
Rudolph
,
Gen. Relativ. Gravit.
8
,
197
(
1977
);
W. G.
Dixon
,
Philos. Trans. R. Soc. London, Ser. A
277
,
59
(
1974
).
4.
W. G.
Dixon
,
J. Math. Phys.
8
,
1591
(
1967
).
5.
K. S.
Thorne
,
Rev. Mod. Phys.
52
,
299
(
1980
).
6.
R.
Geroch
,
J. Math. Phys.
11
,
2580
(
1970
).
7.
R. O.
Hansen
,
J. Math. Phys.
15
,
46
(
1974
).
8.
Y.
Gürsel
,
Gen. Relativ. Gravit.
15
,
737
(
1983
).
9.
M.
Streubel
and
R.
Schattner
,
Ann. Inst. Henri Poincaré A
34
,
145
(
1981
).
10.
A. Ashtekar, in General Relativity and Gravitation, 10th International Conference on General Relativity and Gravitation, Padua, July 1983, edited by B. Berttoti, F. de Felice, and A. Pascolini (Reidel, Dordrecht, 1984), pp. 37–68.
11.
J. L. Synge, Relativity: the General Theory (North-Holland, Amsterdam, 1960).
12.
D. E.
Betounes
,
Arch. Rat. Mech. Anal.
96
,
1
(
1986
).
13.
D. E. Betounes, Contemporary Math (American Mathematical Society, Providence, 1987), Vol. 68, pp. 23–37.
14.
C. Truesdell and R. Toupin, in Principles of Classical Mechanics and Field Theory, edited by S. Fliige (Springer-Verlag, Berlin, 1960), pp. 226–793.
15.
R. M. Wald, General Relativity (University of Chicago, Chicago, 1984).
16.
R.
Schattner
and
M.
Streubel
,
Ann. Inst. Henri Poincaré A
34
,
117
(
1981
).
17.
R. Abraham, J. E. Marsden, and T. Ratiu, Manifolds, Tensor Analysis, and Applications (Addison-Wesley, London, 1983).
18.
J. D.
Lathrop
,
Ann. Phys. N.Y.
79
,
580
(
1973
).
19.
K. S.
Thorne
and
Y.
Gürsel
,
Mon. Not. R. Ast. Soc.
205
,
809
(
1983
).
This content is only available via PDF.
You do not currently have access to this content.