The ordinary Poisson brackets in field theory do not fulfill the Jacobi identity if boundary values are not reasonably fixed by special boundary conditions. It is shown that these brackets can be modified by adding some surface terms to lift this restriction. The new brackets generalize a canonical bracket considered by Lewis, Marsden, Montgomery, and Ratiu for the free boundary problem in hydrodynamics. The definition of Poisson brackets used herein permits the treating of to treat boundary values of a field on equal footing with its internal values and the direct estimation of estimate the brackets between both surface and volume integrals. This construction is applied to any local form of Poisson brackets.
REFERENCES
1.
I. M.
Gel’fand
and L. A.
Dickey
, Usp. Mat. Nauk.
30
, 67
(1975
);B. A.
Dubrovin
and S. P.
Novikov
, Usp. Mat. Nauk.
44
, 29
(1989
).2.
3.
V. O.
Soloviev
, Teor. Mat. Fiz.
65
, 400
(1985
).4.
V. I. Arnold, Mathematical Methods of Classical Mechanics (Nauka, Moscow, 1974), p. 186 (in Russian).
5.
V. A.
Arkadiev
, A. K.
Pogrebkov
, and M. K.
Polivanov
, Dokl. Acad. Nauk.
298
, 324
(1988
);V. A.
Arkadiev
, A. K.
Pogrebkov
, and M. K.
Polivanov
, Teor. Mat. Fiz.
75
, 170
(1988
).6.
7.
8.
9.
10.
I. M. Anderson, Ph.D. thesis, University of Arizona, 1976;
11.
12.
P. J. Olver, Applications of Lie groups to Differential Equations, Graduate texts in mathematics (Springer-Verlag, New York, 1986).
13.
14.
V. E.
Zakharov
, Zh. Prikl. Mekh. Tekhn. Fiz.
, No. 2, 86
(1968
).15.
I. M. Anderson, in Mathematical Aspects of Classical Field Theory, edited by M. J. Gotay, J. E. Marsden, and V. Moncrief, Contemporary Mathematics, Vol. 132 (American Mathematical Society, Providence, RI, 1992).
16.
M. D.
Kruskal
, R. M.
Miura
, C. S.
Gardner
, and N. J.
Zabusky
, J. Math. Phys.
11
, 952
(1970
).17.
A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series: Elementary Functions (Nauka, Moscow, 1981) (in Russian).
18.
19.
I. M. Gel’fand and G. E. Shilov, Generalized Functions. 1 (Fizmatgiz, Moscow, 1959) (in Russian);
V. S. Vladimirov, Equations of Mathematical Physics (Nauka, Moscow, 1967) (in Russian).
20.
B. Malgrange, Ideals of Differentiate Functions (Oxford University, New York, 1966).
21.
N. N. Bogolyubov, A. A. Logunov, I. T. Todorov, and A. I. Oksak, General Principles of Quantum Field Theory (Nauka, Moscow, 1987) (in Russian).
22.
Yu. V.
Egorov
, Usp. Mat. Nauk.
45
, 3
(1990
).23.
24.
H. Nicolai and H.-J. Matschull, Aspects of canonical gravity and supergravity, Preprint DESY 92-099, Hamburg, 1992 (to appear in J. Geom. Phys.).
This content is only available via PDF.
© 1993 American Institute of Physics.
1993
American Institute of Physics
You do not currently have access to this content.