For the hydrogen atom, a single relativistic wave equation in Whittaker form was derived which yields the energy level spectrum, the same as that given by the Dirac (coupled system of) equations. Unlike the usual treatments of the Dirac equation, the solutions presented here do not diverge at infinity, in fact they approach zero. Also, for Z<119, it is shown that the usual energy levels follow; however, for 119<Z<137 the spectrum depends on a free parameter.
REFERENCES
1.
L. I. Schiff, Quantum Mechanics, 3rd ed. (McGraw-Hill, New York, 1956).
2.
N. Tralli and F. R. Pomilla, Atomic Theory: An Introduction to Wave Mechanics (McGraw-Hill, New York, 1969).
3.
P. M. Dirac, The Principles of Quantum Mechanics, 4th ed. (Clarendon, Oxford, 1958), p. 267.
4.
H. Bethe and E. A. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms (Springer-Verlag, Berlin, 1957), p. 47.
5.
6.
7.
D. R.
Brill
and J. A.
Wheeler
, Rev. Mod. Phys.
465
(1957
).8.
A.
Lichnerowitz
, Bull. Soc. Math. France
92
, 11
(1964
);Relativity Groups and Topology (Gordon and Breach, New York, 1964), p. 823.
9.
E.
Schrodinger
, Commun. Pontif. Acad. Sci.
2
, 321
(1938
).10.
J. J. Sakurai, Advanced Quantum Mechanics (Addison-Wesley, Reading, MA, 1967), pp. 123–124.
11.
I. Abramowitz and S. Stegen, Handbook of Mathematical Functions (Nat’l. Bureau of Standards, Washington, D.C., 1964);
E. Jahnke and F. Emde, Tables of Functions (Dover, New York, 1943);
P. M. Morse and H. Feshback, Methods of Theoretical Physics (McGraw-Hill, New York, 1953), p. 727.
12.
S. S. Schweber, An Introduction to Relativistic Quantum Theory (Harper and Row, New York, 1962), p. 104.
13.
R. V. Churchill, Fourier Series and Boundary Value Problems (McGraw-Hill, New York, 1941), p. 50.
14.
E.
Schrodinger
, Sitzungber Preuss. Akad. Wiss. Phys. Math. Kl.
, 105
, (1932
);V.
Bargmann
, Sitzungber Preuss. Akad. Wiss. Phys. Math. Kl.
346
, (1932
); , Sitzungsber. Preuss. Akad. Wiss., Phys. Math. Kl.
15.
J. A. Wheeler, Geometrodynamics (Academic, New York, 1962).
16.
17.
S. Chandrasekar, The Mathematical Theory of Black Holes (Oxford University, New York, 1983).
18.
G. Birkhoff and S. MacLane, A Survey of Modern Algebra (Macmillan, New York, 1941);
B. L. van der Waerden Modern Algebra (Frederic Ungar, New York, 1953);
E. P. Wigner, Group Theory and its Application to the Quantum Mechanics of Atomic Spectra (Academic, New York, 1959).
19.
B. Thaller, The Dirac Equation (Springer-Verlag, Berlin, 1992), e.g., pp. 305–306.
20.
C. Itzykson and J. Zuber, Quantum Field Theory (McGraw-Hill, New York, 1980), p. 79.
21.
22.
A. H.
Cook
, Proc. R. Soc. A
383
, 247
(1982
).
This content is only available via PDF.
© 1993 American Institute of Physics.
1993
American Institute of Physics
You do not currently have access to this content.