In the framework of a relativistic extension of the three‐constituent–quark model of the proton, spinors of third rank in Dirac indices are used to express covariantly the spin structure of S‐state baryons of spin 1/2 or 3/2. These spinors are defined directly in terms of 4‐spinors of the Dirac space D, and classified according to the irreducible representations of both the (internal) Lorentz spin group acting on E=D×D×D, and the permutation group S3. All possible combinations of spin, flavor, and momentum distributions of quarks in S‐state baryons are considered from the point of view of S3. We also suggest the possibility of defining Dirac matrices acting on E, which may prove important in view of studying three‐quark confinement forces through an effective relativistic wave equation for the proton.

1.
V.
Bargmann
and
E. P.
Wigner
,
Proc. Nat. Acad. Sci. U.S.
34
,
211
(
1948
).
2.
F.
Hussain
,
J. G.
Körner
, and
G.
Thompson
,
Ann. Phys. (N.Y.)
206
,
334
(
1991
).
3.
A.
Salam
,
R.
Delbourgo
, and
J.
Strathdee
,
Proc. R. Soc. London, Ser. A
284
,
146
(
1965
);
B.
Sakita
and
K. C.
Wali
,
Phys. Rev. B
139
,
1355
(
1965
).
4.
T.
Gudehus
,
Phys. Rev.
184
,
1788
(
1969
).
5.
Here, we are using the conventions of Bjorken and Drell, Relativistic Quantum Mechanics (McGraw-Hill, New York, 1964).
6.
R. P.
Feynman
,
M.
Kisslinger
, and
F.
Ravndal
,
Phys. Rev. D
3
,
2636
(
1971
).
7.
R. G.
Lipes
,
Phys. Rev. D
5
,
2849
(
1972
).
8.
A. B.
Henriques
,
B. H.
Kellet
, and
R. G.
Moorhouse
,
Ann. Phys. (N.Y.)
93
,
125
(
1975
).
9.
E. M. Corson, Introduction to Tensors, Spinors and Relativistic Wave Equations (Blackie, Glasgow, 1953).
10.
A.
Le Yaouanc
,
L.
Oliver
,
O.
Pène
, and
J. C.
Raynal
,
Phys. Rev. D
9
,
2636
(
1974
).
11.
G. P.
Lepage
and
S. J.
Brodsky
,
Phys. Rev. D
22
,
2157
(
1980
);
G. P.
Lepage
and
S. J.
Brodsky
,
Phys. Lett. B
87
,
359
(
1979
);
G. P.
Lepage
and
S. J.
Brodsky
,
Phys. Rey. Lett.
43
,
545
,
1625
(E) (
1979
);
V. L.
Chernyak
and
A. R.
Zhitnitsky
,
Phys. Rep.
112
,
173
(
1984
).
12.
See, for instance,
S.
Weinberg
,
Phys. Rev. B
133
,
1318
(
1963
).
P. Moussa and R. Stora, in Methods in Subnuclear Physics, Hercegnovi (Gordon and Breach, New York, 1966), Vol. 2, p. 265. See also,
D. V. Ahluwalia and D. J. Ernst, Preprints CTP-TAMU 57/91, CTP-TAMU 04/92;
D. V. Ahluwalia, D. J. Ernst, and C. Burgard, Preprint CTP-TAMU 58/91 (Texas A&M University).
13.
F. E. Close, An Introduction to Quarks and Partons (Academic, New York, 1979).
14.
H. Bacry, Leçons sur la Théorie des Groupes et les Symétries des Particules Elémentaires (Gordon and Breach, New York, 1967);
Morton Hamermesh, Group Theory and its Application to Physical Problems (Addison-Weysley, Reading, 1962).
15.
C. Carimalo, Internal Report No. LPC 92 24.
16.
B. L. Van der Waerden, Group Theory and Quantum Mechanics (Springer-Verlag, Berlin, 1974).
17.
H. Weyl, The Classical Groups (Princeton University, Princeton, 1946);
D. E. Littlewood, The Theory of Group Characters and Matrix Representations of Groups (Oxford University, Oxford, 1950).
18.
P. A. M. Dirac, The Relativistic Electron Wave Equation, Proceedings of the 1977 European Conference on Particle Physics, Budapest, 4–9 July 1977, edited by L. Jenik and I. Montvay, Vol. 1, p. 15;
M. M. Nieto, in Group Theoretical Methods in Physics, Lecture Notes in Physics, edited by W. Beiglböck, A. Böhm, and E. Takasugi (Springer-Verlag Berlin, 1979), Vol. 94, p. 324.
19.
H.
Leutwyller
and
J.
Stern
,
Nucl. Phys. B
157
,
327
(
1979
).
20.
V. A.
Novikov
,
M. A.
Shifman
,
A. I.
Vainshtein
, and
V. I.
Zakharov
,
Fortschr. Phys.
32
,
585
(
1984
);
E. V. Shuryak, The QCD Vacuum, Hadrons and the Superdense Matter, World Scientific Lecture Notes in Physics (World Scientific, Singapore, 1988), Vol. 8.
21.
L. J.
Reinders
,
H.
Rubinstein
, and
S.
Yazaki
,
Phys. Rep.
127
,
1
(
1985
).
22.
ST.
Glasek
and
M.
Schaden
,
Phys. Lett. B
198
,
42
(
1987
).
23.
We are indebted to Professor M. Froissart for having suggested that demonstration to us.
This content is only available via PDF.
You do not currently have access to this content.