Braided differential operators ∂i are obtained by differentiating the addition law on the braided covector spaces introduced previously (such as the braided addition law on the quantum plane). These are affiliated to a Yang–Baxter matrix R. The quantum eigenfunctions expR(xv) of the ∂i (braided‐plane waves) are introduced in the free case where the position components xi are totally noncommuting. A braided R‐binomial theorem and a braided Taylor theorem expR(a‖∂)f(x)=f(a+x) are proven. These various results precisely generalize to a generic R‐matrix (and hence to n dimensions) the well‐known properties of the usual one‐dimensional q‐differential and q‐exponential. As a related application, it is shown that the q‐Heisenberg algebra pxqxp=1 is a braided semidirect product C[xC[ p] of the braided line acting on itself (a braided Weyl algebra) and similarly for its generalization to an arbitrary R‐ matrix.

1.
S.
Majid
,
J. Math. Phys.
32
,
3246
(
1991
).
2.
S.
Majid
,
Lett. Math. Phys.
22
,
167
(
1991
).
3.
S.
Majid
,
J. Math. Phys.
33
,
3431
(
1992
).
4.
S.
Majid
,
J. Math. Phys.
34
,
1176
(
1993
).
5.
S.
Majid
,
J. Math. Phys.
34
,
2045
(
1993
).
6.
S.
Majid
,
Int. J. Mod. Phys. A
5
(
24
),
4689
(
1990
).
7.
S. Majid, Beyond supersymmetry and quantum symmetry (an introduction to braided groups and braided matrices), in Proceedings of Nankai Workshop, 1992, edited by M-L. Ge (World Scientific, Singapore, 1993).
8.
S. Majid, “Cross products by braided groups and bosonization,” 1991. J. Alg. (to appear).
9.
Yu. I. Manin, Notes on quantum groups and quantum de Rham complexes, preprint MPI (1991).
10.
A.
Rozenberg
,
Commun. Math. Phys.
142
,
567
(
1991
).
11.
J.
Schwenk
and
J.
Wess
,
Phys. Lett. B
291
,
273
(
1992
).
12.
A.
Kempf
,
Lett. Math. Phys.
26
,
1
(
1992
).
13.
S. Majid, “Rank of quantum groups and braided groups in dual form,” in Proceedings of the Euler Institute, St. Petersberg (1990),
Springer Lect. Notes. in Math.
1510
,
79
(
1992
).
14.
S.
Majid
,
J. Pure Appl. Alg.
86
,
187
(
1993
).
15.
O.
Ogievetsky
,
W. B.
Schmidke
,
J.
Wess
, and
B.
Zumino
,
Commun. Math. Phys.
150
,
495
(
1992
).
16.
U.
Carow-Watamura
,
M.
Schlieker
,
M.
Scholl
, and
S.
Watamura
,
Int. J. Mod. Phys.
6
,
3081
(
1991
).
This content is only available via PDF.
You do not currently have access to this content.