A nonperturbative geometric formulation of the N=2 Neveu–Schwarz superstring theory which has been recently interpreted by H. Ooguri and C. Vafa [Mod. Phys. Lett. A5, 1389 (1990)] as a consistent quantum theory of self‐dual gravity in four dimensions, is constructed. It is shown that the natural complex structure over the loop superspace ΩMdd associated to the N=2 Neveu–Schwarz fermionic string, is invariant under symmetry group OSp(2‖2)⊆SuperdiffS1‖2. Moreover, it is proved that there is a unique Lorentz and OSp(2‖2) invariant complex structure on ΩMdd. This result implies that the superspace of all admissible complex structures over ΩMdd is isomorphic to the homogeneous Kähler supermanifold SuperdiffS1‖2/OSp(2‖2). The Ricci curvature of SuperdiffS1‖2/OSp(2‖2) is calculated. Applying the method of geometric quantization to the N=2 Neveu–Schwarz superstring theory along the lines suggested by M. J. Bowick and S. G. Rajeev [Nucl. Phys. B361, 469 (1991)], a representation is constructed of nonperturbative N=2 superstring vacua in terms of antiholomorphic and horizontal sections of a certain vector bundle over SuperdiffS1‖2/OSp(2‖2); it is proved that such sections exist only in complex dimension d=2.

1.
M.
Ademollo
,
L.
Brink
,
A.
D’Adda
,
R.
D’Auria
,
E.
Napolitano
,
S.
Sciuto
,
E.
Del Giudice
,
P.
Di Vecchia
,
S.
Ferrara
,
F.
Gliozzi
,
R.
Musto
,
R.
Pettorino
, and
J. H.
Schwarz
,
Nucl. Phys. B
111
,
77
(
1976
).
2.
D. J.
Bruth
,
D. B.
Fairle
, and
R. G.
Yates
,
Nucl. Phys. B
108
,
310
(
1976
).
3.
A.
D’Adda
and
F.
Lizzi
,
Phys. Lett. B
191
,
85
(
1987
).
4.
H.
Ooguri
and
C.
Vafa
,
Mod. Phys. Lett. A
5
,
1389
(
1990
).
5.
H.
Ooguri
and
C.
Vafa
,
Nucl. Phys. B
361
,
469
(
1991
).
6.
R.
Penrose
,
Gen. Relat. Grav.
7
,
31
(
1976
).
7.
M. J.
Bowick
and
S. G.
Rajeev
,
Phys. Rev. Lett.
58
,
535
(
1987
).
8.
M. J.
Bowick
and
S. G.
Rajeev
,
Nucl. Phys. B
293
,
348
(
1987
).
9.
S. A.
Merkulov
,
JETP Lett.
55
(
3
),
153
(
1992
).
10.
S.
Nag
and
A.
Verjovsky
,
Commun. Math. Phys.
130
,
123
(
1990
).
11.
O. Lehto, Univalent Functions and Teichmuller Spaces (Springer, Berlin, 1984).
12.
D. K.
Hong
and
S. G.
Rajeev
,
Commun. Math. Phys.
135
,
401
(
1991
).
13.
D.
Harari
,
D. K.
Hong
,
P.
Ramond
, and
V.
Rodgers
,
Nucl. Phys. B
294
,
556
(
1987
).
14.
Z. Y.
Zhao
,
K.
Wu
, and
T.
Saito
,
Phys. Lett. B
199
,
37
(
1987
).
15.
S. A.
Merkulov
,
JETP Lett.
55
(
3
),
156
(
1992
).
16.
D. Freed, in Infinite Dimensional Group with Applications, edited by V. Kae (Springer, Berlin, 1985).
17.
Yu. I. Manin, Complex Geometry and Gauge Field Theory (Nauka, Moscow, 1984).
18.
A.
Pressley
,
J. London Math. Soc.
26
,
557
(
1982
).
19.
A. Pressley and G. Segal, Loop Groups (Clarendon, Oxford, 1986).
20.
S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. 2 (Interscience, New York, 1969).
21.
M. B. Green, J. H. Schwarz, and E. Witten, Superstring Theory, Vol. 1 (Cambridge U.P., Cambridge, 1987).
22.
N. J. M. Woodhouse, Geometric Quantization (Clarendon, Oxford, 1980).
23.
J. Sniatycki, Geometric Quantization and Quantum Mechanics (Springer, New York, 1980).
This content is only available via PDF.
You do not currently have access to this content.