It is shown that with every Lax operator, which is a pseudodifferential operator of nonzero leading order, is associated a KP hierarchy. For each such operator, we construct the second Gelfand–Dikii bracket associated with the Lax equation and show that it defines a Hamiltonian structure. When the leading order is positive the corresponding compatible first Hamiltonian structure, which turns out, in general, to be different from the naive first Gelfand–Dikii bracket is derived. The corresponding Hamiltonian structures for the constrained Lax operator, where the next to leading‐order term vanishes or has a constant coefficient, is discussed.

1.
P. D.
Lax
,
Comments Pure Appl. Math.
21
,
467
(
1968
).
2.
I. M.
Gelfand
and
L. A.
Dikii
,
Russ. Math. Surv.
30
,
77
(
1975
).
3.
I. M.
Gelfand
and
L. A.
Dikii
,
Funct. Anal. Appl.
10
,
4
(
1976
).
4.
A. C. Newell, Solitonsin Mathematical Physics (SIAM, Philadelphia, 1985).
5.
L. D. Faddeev and L. A. Takhtajan, Hamiltonian Methods in the Theory of Solitons (Springer-Verlag, New York, 1987).
6.
A. Das, Integrable Models (World Scientific, Singapore, 1989).
7.
I. M.
Gelfand
and
L. A.
Dikii
,
Funct. Anal. Appl.
11
,
93
(
1977
).
8.
M.
Adler
,
Invent. Math.
50
,
219
(
1979
).
9.
G.
Wilson
,
Math. Proc. Cambridge Philos. Soc.
86
,
131
(
1979
).
10.
I.M. Gelfand and L. A. Dikii, Preprint No. 136, Inst. Appl. Math. Acad. Sci. USSR, 1978.
11.
B. A.
Kupershmidt
and
G.
Wilson
,
Invent. Math.
62
,
403
(
1981
).
12.
F.
Magri
,
J. Math. Phys.
19
,
1156
(
1978
).
13.
S.
Okubo
and
A.
Das
,
Phys. Lett. B
209
,
311
(
1988
);
A.
Das
and
S.
Okubo
,
Ann. Phys.
190
,
215
(
1989
).
14.
E.
Date
,
M.
Jimbo
,
M.
Kashiwara
, and
T.
Miwa
,
Proc. Jpn. Acad. Sci. A
57
,
387
(
1981
);
E.
Date
,
M.
Jimbo
,
M.
Kashiwara
, and
T.
Miwa
,
J. Phys. Soc. Jpn.
50
,
3866
(
1981
).
15.
V. G.
Drinfeld
and
V. V.
Sokolov
,
J. Sov. Math.
30
,
1975
(
1985
).
16.
L. A.
Dikii
,
Commun. Math. Phys.
87
,
127
(
1982
).
17.
See, for example, P. DiFrancesco, C. Itzykson, and J. B. Zuber, NSF-ITP-90-193, SPhT/90–149, PUPT-1211 (1990).
18.
Y.
Watanabe
,
Ann. Mat. Pura Appl.
86
,
77
(
1984
).
19.
A.
Das
,
W.-J.
Huang
, and
S.
Panda
,
Phys. Lett. B
271
,
109
(
1991
).
20.
J. M.
Figueroa-O’Farrill
,
J.
Mas
, and
E.
Ramos
,
Phys. Lett. B
266
,
298
(
1991
).
21.
F. Yu and Y. S. Wu, Utah preprint (1991).
This content is only available via PDF.
You do not currently have access to this content.