Eigenfunctions of the curl derivatives are used in many different fields of theoretical physics. For example, in plasma physics, an eigenfunction of curl represents a certain eigenstate of a plasma that has the force‐free property. The present theory proves that the spectral resolution of the curl operator gives a complete eigenfunction expansion of a solenoidal vector field with homogeneous boundary and flux conditions. Useful decomposition theories and a previous abstract result [Math. Z. 204, 235 (1990)] are concisely summarized. Explicit eigenfunctions have been studied in cylindrical geometries. Chandrasekhar–Kendall functions [Astrophys. J. 126, 457 (1957)], which are eigenfunctions of the curl derivatives in a cylindrical domain, give an orthogonal complete basis of the Hilbert space that is the orthogonal complement of the space of irrotational vector fields.

1.
E. C. Titchmarsh, Eigenfunction Expansions Associated with Second-Order Differential Equations (Clarendon, Oxford, 1946).
2.
P. M. Morse and H. Feshbach, Methods of Theoretical Physics (Mc-Graw-Hill, New York, 1953).
3.
D.
Montgomery
,
L.
Turner
, and
G.
Vahala
,
Phys. Fluids
21
,
757
(
1978
).
4.
R. G.
Storer
,
Plasma Phys.
25
,
1279
(
1983
).
5.
L.
Turner
,
Ann. Phys. N.Y.
149
,
58
(
1983
).
6.
D.
Montgomery
,
L.
Phillips
, and
M. L.
Theobald
,
Phys. Rev. A
40
,
1515
(
1989
).
7.
H.
Chen
,
X.
Shan
, and
D.
Montgomery
,
Phys. Rev. A
42
,
6158
(
1990
).
8.
H. E.
Moses
,
J. Math. Phys.
25
,
1905
(
1984
).
9.
H. E.
Moses
and
R. T.
Prosser
,
Proc. R. Soc. London Ser. A
422
,
351
(
1989
).
10.
S.
Chandrasekhar
and
P. C.
Kendall
,
Astrophys. J.
126
,
457
(
1957
).
11.
L.
Woltjer
,
Astrophys. J.
128
,
384
(
1958
).
12.
L.
Woltjer
,
Proc. Natl. Acad. Sci. U.S.A.
44
,
489
(
1958
).
13.
Y.
Nakagawa
and
M. A.
Raadu
,
Sol. Phys.
25
,
127
(
1972
).
14.
B. C.
Low
,
Rev. Geophys. Space Phys.
20
,
145
(
1982
).
15.
N. A.
Salingaros
,
Appl. Phys. Lett.
56
,
617
(
1990
).
16.
We note that a current density j is not necessarily force-free, even if the equation ∇×j = λj is satisfied; see Ref. 15.
17.
E. E.
Nolting
,
P. E.
Jindra
, and
D. R.
Wells
,
J. Plasma Phys.
9
,
1
(
1973
).
18.
J. B.
Taylor
,
Phys. Rev. Lett.
33
,
1139
(
1974
).
19.
J. B.
Taylor
,
Rev. Mod. Phys.
58
,
741
(
1986
).
20.
The eigenvalue problem is also related to the Woltjer variational principle with a constraint on the global helicity;11
see
P.
Laurence
and
M.
Avellaneda
,
J. Math. Phys.
32
,
1240
(
1991
).
21.
Z.
Yoshida
,
T.
Uchida
, and
N.
Inoue
,
Phys. Fluids
27
,
1785
(
1984
).
22.
C.
Chu
and
T.
Ohkawa
,
Phys. Rev. Lett.
48
,
837
(
1982
).
23.
Z.
Yoshida
,
J. Plasma Phys.
45
,
481
(
1991
).
24.
A.
Lakhtakia
,
Arc. Elek. Übertr.
45
,
57
(
1991
).
25.
There are other possibilities of determining the eigenvalue of an m = 0 mode, however, this definition is appropriate for the present theory. Without the homogeneous flux condition, the curl has a continuum of the point spectrum that is shown to spread throughout the complex plane.
26.
Z.
Yoshida
and
Y.
Giga
,
Math. Z.
204
,
235
(
1990
).
27.
When the domain is not bounded, CK functions are not square integrable (infinite energy). Then a curl operator may have a continuous spectrum.
28.
K. Yosida, Functional Analysis (Springer-Verlag, New York, 1980).
29.
C. B. Morrey, Multiple Integrals in the Calculus of Variations (Springer-Verlag, Berlin, 1966).
30.
C.
Foias
and
R.
Temam
,
Ann. Suola. Norm. Sup. Pisa
5
,
29
(
1978
).
31.
H.
Weyl
,
Duke Math. J.
7
,
411
(
1940
).
32.
P.
Werner
,
J. Math. Anal. Appl.
92
,
1
(
1983
).
33.
P. R.
Kotiuga
,
J. Appl. Phys.
61
,
3916
(
1987
).
34.
P. R.
Kotiuga
,
IEEE Trans.
MAG-25
,
4129
(
1989
).
35.
K.
Kodaira
,
Ann. Math.
50
,
587
(
1948
).
36.
G. F. D.
Duff
,
Ann. Math.
56
,
115
(
1952
).
37.
G. F. D.
Duff
and
D. C.
Spencer
,
Ann. Math.
56
,
129
(
1952
).
38.
P. E.
Connor
,
Proc. Natl. Acad. Sci. U.S.A.
40
,
1151
(
1954
).
39.
For an operator to be self-adjoint requires that the adjoint operator has exactly the same domain of definition, as well as the symmetry with respect to the inner product (Ref. 28).
40.
Compactness of an integral operator that may be considered to be equivalent to the present J−1 was studied in
R.
Kress
,
J. Eng. Math.
20
,
323
(
1986
).
This content is only available via PDF.
You do not currently have access to this content.