A theory of Hilbert superspace over an infinite dimensional Grassmann algebra Λ is given. Axioms of Hilbert superspace are given and it is proven that a Hilbert superspace is isomorphic to H⊗Λ for some Hilbert space H. A natural topology on it called ε topology is defined and continuous Λ‐linear operators, especially unitary operators are studied. A Hilbert subsuperspace is defined and it is proven that its orthogonal complement is a Hilbert subsuperspace.

1.
D. P. K.
Ghikas
,
J. Math. Phys.
22
,
590
(
1981
).
2.
A.
Jaffe
,
A.
Lewniewski
, and
J.
Weitsman
,
Commun. Math. Phys.
114
,
147
(
1988
).
3.
A.
Arai
,
J. Math. Phys.
30
,
512
(
1989
).
4.
B. DeWitt, Supermanifolds (Cambridge University, London, 1984).
5.
S.
Nagamachi
and
Y.
Kobayashi
,
Lett. Math. Phys.
14
,
15
(
1987
).
6.
A.
Rogers
,
J. Math. Phys.
21
,
1352
(
1980
).
7.
Y.
Kobayashi
and
S.
Nagamachi
,
J. Math. Phys.
28
,
1700
(
1987
).
8.
F. Treves, Topological Vector Spaces, Distributions and Kernels (Academic, New York, 1967).
This content is only available via PDF.
You do not currently have access to this content.