The Dirac equation is solved for an electron in a Kerr–Newman geometry using an adaptation of the procedure of Chandrasekhar. The corresponding eigenfunctions obtained can be represented as series of Jacobi polynomials. The spectrum of eigenvalues can be calculated using continued fraction techniques. Representations for the eigenvalues and eigenfunctions are obtained for various ranges of the parameters appearing in the Kerr–Newman metric. Some comments concerning the bag model of nucleons are made.  

1.
E. T.
Newman
,
E.
Couch
,
K.
Chinnapared
,
A.
Exton
, and
R.
Torrence
,
J. Math. Phys.
6
,
918
(
1965
).
2.
R. P.
Kerr
,
Phys. Rev. Lett.
11
,
237
(
1963
).
3.
S. Chandrasekhar, The Mathematical Theory of Black Holes (Oxford U.P., London, 1983).
4.
R. A.
Breuer
,
M. P.
Ryan
, Jr.
, and
S.
Waller
,
Proc. R. Soc. Lond. Ser. A
71
, (
1977
).
5.
E. D.
Fackerell
, and
R. D.
Crossman
,
J. Math. Phys.
18
,
1849
(
1977
).
6.
S. A.
Teukolsky
, and
W. H.
Press
,
Astrophys. J.
185
,
649
(
1973
).
7.
J. A. H. Futterman, F. A. Handler, and R. A. Matzner, Scattering from Black Holes (Cambridge U. P., London, 1988).
8.
S.
Chandrasekhar
,
Proc. R. Soc. Lond. Ser. A
349
,
571
(
1976
).
9.
D. N.
Page
,
Phys. Rev. D
14
,
1509
(
1976
).
10.
R. Penrose and W. Rindler, Spinors and Spacetime Vol. 1. Two spinor calculus and relativistic fields (Cambridge U. P., London, 1984).
11.
I. M. Gelfand, R. A. Minlos, and Z. Ya. Shapiro, Representations of the Rotation and Lorentz Groups and Their Applications (Pergamon, London, 1963).
12.
K. G.
Suffern
,
E. D.
Fackerell
, and
C. M.
Cosgrove
,
J. Math. Phys.
24
,
1350
(
1983
).
13.
T. Kato, Perturbation Theory for Linear Operators (Springer, New York, 1966).
14.
W. Miller, Jr., Lie Theory and Special Functions (Academic, New York, 1968).
This content is only available via PDF.
You do not currently have access to this content.