The general static, spherically symmetric, asymptotically flat solution of the Einstein equations coupled to a conformal scalar field is determined; it depends on three free parameters. One of the parameters is eliminated by the requirement that the solution admits a smooth horizon and no naked curvature singularities, leading to the black hole solution discovered by Bekenstein. Although the scalar field is unbounded on the horizon, this should not be considered as a physical pathology.
REFERENCES
1.
G. Bunting, in “Proof of the uniqueness conjecture for black holes,” Ph. D. thesis (unpublished), University of New England, Armidale, N.S.W., (1983);
S. Chandrasekhar, in The Mathematical Theory of Black Holes (Clarendon, Oxford, 1983);
P. Mazur, in General Relativity and Gravitation, Proceedings of GRG11, edited by M. A. H. Mac-Callum (Cambridge U. P., Cambridge, 1987), p. 130.
2.
3.
M.
Aryal
, L. H.
Ford
, and A.
Vilenkin
, Phys. Rev. D
34
, 2263
(1986
);4.
5.
6.
7.
8.
M. J.
Bowick
, S. B.
Giddings
, J. A.
Harvey
, G. T.
Horowitz
, and A.
Strominger
, Phys. Rev. Lett.
61
, 2823
(1988
).9.
10.
B. C. Xanthopoulos and T. Zannias, “The gravity of three forms,” to be published in J. Math. Phys.
11.
12.
13.
14.
N. D. Birrell and P. C. W. Davies, in Quantum Fields in Curved Space (Cambridge U. P., Cambridge, 1982);
C. G.
Callan
,Jr. , S.
Coleman
, and R.
Jackiw
, Ann. Phys. (NY)
59
, 42
(1970
);15.
A.
Janis
, E.
Newman
, and J.
Winicour
, Phys. Rev. Lett.
20
, 878
(1968
);16.
For a minimally coupled massless scalar field the equation are
This content is only available via PDF.
© 1991 American Institute of Physics.
1991
American Institute of Physics
You do not currently have access to this content.