Using Dirac’s prescription for constrained Hamiltonian systems, it will be shown that for the Stephenson–Kilmister–Yang theory of gravity the number of constraints is greater than the number of degrees of freedom when metric and connection are independent field variables.

1.
G.
Stephenson
,
Nuovo Cimento
9
,
263
(
1958
);
C. W.
Kilmister
and
J.
Newman
,
Proc. Cambridge Phil. Soc.
57
,
851
(
1961
);
C. N.
Yang
,
Phys. Rev. Lett.
33
,
445
(
1974
).
2.
P. A. M. Dirac, Lectures on Quantum Mechanics (Academic, New York, 1964);
A. Hanson, T. Regge, and C. Teitelboim, Constrained Hamiltonian Systems (Academia Nazionale dei Lincei, Roma, 1976).
3.
M.
Blagojevic
and
I. A.
Nikolik
,
Phys. Rev. D
28
,
2455
(
1983
);
I. A.
Nikolic
,
Phys. Rev. D
30
,
2508
(
1984
).
4.
L. D. Faddeev and A. A. Slavnov, Gauge Fields (Benjamin Cummings, Reading, MA, 1980).
5.
V.
Szczyrba
,
Phys. Rev. D
36
,
351
(
1987
).
6.
J. W.
Maluf
,
Class. Quantum Grav.
6
,
L81
(
1988
).
7.
P. Baekler, F. W. Hehl, and E. W. Mielke, Proceeding of the Second Marcel Grossman Meeting on General Relativity, edited by R. Ruffini (North-Holland, Amsterdam, 1982), p. 413.
This content is only available via PDF.
You do not currently have access to this content.