The equations for Chern–Simons–Higgs and Abelian Higgs vortices are reformulated in a certain form of background metric. Painlevé analysis is applied to determine integrability of the equations, and explicit solutions for cylindrically symmetric Chern–Simons–Higgs vortices are found for a specific choice of the metric.
REFERENCES
1.
J.
Hong
, Y.
Kim
, and P. Y.
Pac
, Phys. Rev. Lett.
64
, 2230
(1990
);R.
Jackiw
and E. J.
Weinberg
, Phys. Rev. Lett.
64
, 2234
(1990
);2.
3.
(c)
H. J.
de Vega
and F. A.
Schaposnik
, Phys. Rev. D
14
, 1100
(1976
).4.
E. L. Ince, Ordinary Differential Equations (Dover, New York, 1956) (See Chap. 14 and references therein.).
5.
J.
Weiss
, M.
Tabor
, and G.
Carnevale
, J. Math. Phys.
24
, 522
(1982
).6.
7.
8.
9.
10.
11.
12.
L. Jacobs, A. Khare, N. Kumar, and S. K. Paul, MIT preprint CTP♯1829.
13.
14.
M. J.
Ablowitz
, A.
Ramani
, and H.
Segur
, J. Math. Phys.
21
, 715
(1980
).15.
16.
This content is only available via PDF.
© 1991 American Institute of Physics.
1991
American Institute of Physics
You do not currently have access to this content.