The time evolution of d mean field variables is considered for networks of N neurons whose connection matrices JN have d distinct rows. Certain assumptions are made about the large N behavior of JN, which guarantee the convergence of a free‐energy density function. These assumptions are known to be satisfied, e.g., in the Hopfield model with p stored patterns, for d=2p. It is proved that in a scaling limit, where N tends to infinity and d stays fixed, the time evolution approaches that of a diffusion process in Rd. This process describes in detail, and for times up to ℴ(N3/2) iterations, the dynamics of the mean field fluctuations near a local minimum of the free‐energy density.

1.
J. L.
van Hemmen
and
R.
Kühn
,
Phys. Rev. Lett.
57
,
913
(
1986
).
2.
J. J.
Hopfield
,
Proc. Natl. Acad. Sci. USA
79
,
2554
(
1982
).
3.
L.
Personnaz
,
I.
Guyon
, and
G.
Dreyfus
,
J. Physique Lett.
46
,
L359
(
1985
).
4.
S.
Diederich
and
M.
Opper
,
Phys. Rev. Lett.
58
,
949
(
1987
).
5.
K. W. Berryman, M. E. Inchiosa, A. M. Jaffe, and S. A. Janowsky, “Convergence of an Iterative Neural Network Learning Algorithm for Linearly Dependent Patterns,” Harvard University preprint HUTMP 89/B237 (1989).
6.
H.
Koch
and
J.
Piasko
,
J. Stat. Phys.
55
,
903
(
1989
).
7.
D. J. Amit, “The Properties of Models of Simple Neural Networks,” in Heidelberg Colloquium on Glassy Dynamics (1986), edited by J. L. van Hemmen and I. Morgenstern, Lecture Notes in Physics, Vol. 275 (Springer-Verlag, Berlin, 1987), p. 430.
8.
J. L.
van Hemmen
,
D.
Grensing
,
A.
Huber
, and
R.
Kühn
,
J. Stat. Phys.
50
,
231
,
259
(
1987
).
9.
R. J.
McEliece
,
E. C.
Posner
,
E. R.
Rodemich
, and
S. S.
Venkatesh
,
IEEE Trans. Inf. Theor.
IT-33
,
461
(
1986
).
10.
C. M.
Newman
,
Neural Networks
1
,
223
(
1988
).
11.
J. Komlós and R. Paturi, “Convergence Results in the Hopfield Model,” Preprint, UC San Diego (1987).
12.
U.
Riedel
,
R.
Kühn
, and
J. L.
van Hemmen
,
Phys. Rev. A
38
,
1105
(
1988
).
13.
M.
Cassandro
,
A.
Galves
,
E.
Olivieri
, and
M. E.
Vares
,
J. Stat. Phys.
35
,
603
(
1984
).
This content is only available via PDF.
You do not currently have access to this content.