Some exact results for a reversible version of the d=1+1 bridge site (or single‐step) deposition model are presented. Exact steady‐state properties are determined directly for finite systems with various mean slopes. These show explicitly how the asymptotic growth velocity and fluctuations are quenched as the slope approaches its maximum allowed value. Next, exact hierarchial equations for the dynamics are presented. For the special case of ‘‘equilibrium growth,’’ these are analyzed exactly at the pair‐correlation level directly for an infinite system. This provided further insight into asymptotic scaling behavior. Finally, the above hierarchy is compared with one generated from a discrete form of the Kardar–Parisi–Zhang equations. Some differences are described.

1.
P.
Meakin
,
CRC Crit. Rev. Solid State Mat. Sci.
13
,
143
(
1987
);
T. Vicsek, Fractal Growth Phenomena (World Scientific, Singapore, 1989);
F.
Family
,
Physica A
168
,
561
(
1990
).
2.
M.
Kardar
,
G.
Parisi
, and
Y.-C.
Zhang
,
Phys. Rev. Lett.
56
,
889
(
1986
);
E.
Medina
,
T.
Hwa
,
M.
Kardar
, and
Y.-C.
Zhang
,
Phys. Rev. A
39
,
3053
(
1989
).
3.
B.
Grossman
,
H.
Guo
, and
M.
Grant
,
Phys. Rev. A
43
,
1727
(
1991
), have considered this connection for an asymmetric SOS model.
4.
J. G.
Amar
and
F.
Family
,
Phys. Rev. A
41
,
3399
(
1990
).
5.
P.
Meakin
,
P.
Ramanlal
,
L. M.
Sander
, and
R. C.
Ball
,
Phys. Rev. A
34
,
5091
(
1986
).
6.
M.
Plischke
,
Z.
Racz
, and
D.
Liu
,
Phys. Rev. B
35
,
3485
(
1987
).
7.
J.
Krug
and
H.
Spohn
,
Europhys. Lett.
8
,
219
(
1989
).
8.
J. W.
Evans
,
Phys. Rev. B
39
,
5655
(
1989
).
9.
J. W.
Evans
,
Phys. Rev. B
43
,
3897
(
1991
).
10.
H. C.
Kang
and
J. W.
Evans
,
Phys. Rev. A
,
44
(
1991
).
11.
R.
Kutner
,
Phys. Lett. A
81
,
239
(
1981
).
12.
J. W.
Evans
and
D. K.
Hoffman
,
Phys. Rev. B
30
,
2704
(
1984
).
13.
J. W.
Evans
,
Phys. Rev. B
41
,
2158
(
1990
).
14.
R. J.
Glauber
,
J. Math. Phys.
4
,
294
(
1963
).
15.
The second sum exactly equals 〈(Σi = 1Nσi)2〉 = Σi = 1NΣj = 1N〈σiσj〉. See also Ref. 6.
16.
S. F.
Edwards
and
D. R.
Wilkinson
,
Proc. R. Soc. London Ser. A
381
,
17
(
1982
).
17.
D. E.
Wolf
and
L.-H.
Tan
,
Phys. Rev. Lett.
65
,
1591
(
1990
).
18.
S.-K. Ma, Modern Theory of Critical Phenomena (Benjamin, Reading, 1976).
This content is only available via PDF.
You do not currently have access to this content.