The noncommutative differential geometry of the algebra C(V)⊗Mn(C) of smooth Mn(C)‐valued functions on a manifold V is investigated. For n≥2, the analog of Maxwell’s theory is constructed and interpreted as a field theory on V. It describes a U(n)–Yang–Mills field minimally coupled to a set of fields with values in the adjoint representation that interact among themselves through a quartic polynomial potential. The Euclidean action, which is positive, vanishes on exactly two distinct gauge orbits, which are interpreted as two vacua of the theory. In one of the corresponding vacuum sectors, the SU(n) part of the Yang–Mills field is massive. For the case n=2, analogies with the standard model of electroweak theory are pointed out. Finally, a brief description is provided of what happens if one starts from the analog of a general Yang–Mills theory instead of Maxwell’s theory, which is a particular case.

1.
A.
Connes
, “
C*‐algébres et géométrie différentielle
,”
C. R. Acad. Sci. Paris Ser. A
290
,
599
(
1980
).
2.
A.
Connes
, “
Non‐commutative differential geometry
,”
Publ. I. H. E. S.
62
,
257
(
1986
).
3.
M.
Karoubi
, “
Homologie cyclique des groupes et algébres
,”
C. R. Acad. Sci. Paris Ser. I
297
,
381
(
1985
).
4.
M.
Dubois‐Violette
, “
Dérivations et calcul différentiel noncommutatif
,”
C. R. Acad. Sci. Paris Ser. I
307
,
403
(
1988
).
5.
M. Dubois‐Violette, R. Kerner, and J. Madore, “Non‐commutative differential geometry of matrix algebras,” preprint ORSAY‐LPTHE 88/47, 1988.
6.
J. Madore, “Non‐commutative geometry and the spinning particle,” Lecture given at Les Journées Relativistes, Geneva, April 1988 and at the XI Warsaw Symposium on Elementary Particle Physics, Kazimierz, May 1988.
7.
C. Itzykson and J. B. Zuber, Quantum Field Theory (McGraw‐Hill, New York, 1980).
8.
A. J.
Macfarlane
,
A.
Sudbery
, and
P. H.
Weisz
, “
On Gell‐Mann’s λ‐matrices, d‐ and f‐tensors, octets, and parametrization of SU(3)
,
Commun. Math. Phys.
11
,
77
(
1968
).
9.
R.
Kerner
,
L.
Nikolova
, and
V.
Rizov
, “
A two‐level Kaluza‐Klein theory
,”
Lett. Math. Phys.
14
,
333
(
1987
).
10.
M. Dubois‐Violette, J. Madore, and R. Kerner, “Classical bosons in a noncommutative geometry,” preprint ORSAY‐LPTHE 88/57, 1988.
This content is only available via PDF.
You do not currently have access to this content.