The stochastic theory developed by the authors for the scattering from a random planar surface is extended to the case of a random spherical surface, which is assumed to be a homogeneous random field on the sphere, homogeneous with respect to spherical rotations. Based on the group‐theoretical analogies between the two, the formulation of the theory is closely connected to the representation theory of the rotation group. The concept of the ‘‘stochastic’’ spherical harmonics associated with the rotation group and their several formulas are introduced and discussed at the beginning. For the plane wave incident on a random spherical surface, the scattered random wave field can be expanded systematically in terms of the stochastic spherical harmonics in much the same way as the nonrandom case, and several formulas are derived for the coherent scattering amplitude, the coherent and incoherent power flows, and the coherent and incoherent scattering cross sections. The power‐flow conservation law is cast into the stochastic version of the optical theorem stating that the total scattering cross section consisting of the coherent and incoherent power flow is equal to the imaginary part of the coherent forward‐scattering amplitude. Approximate solutions are obtained for the Mie scattering with a slightly random spherical surface where the single scattering approximation is valid due to the absence of a real resonance, as shown in the previous work on the two‐dimensional case. Some numerical calculations are made for the coherent and incoherent scattering cross sections.

1.
J.
Nakayama
,
H.
Ogura
, and
B.
Matsumoto
,
Radio Sci.
15
,
1049
(
1980
).
2.
J.
Nakayama
,
H.
Ogura
, and
M.
Sakata
,
J. Math. Phys.
22
,
471
(
1981
).
3.
J.
Nakayama
,
H.
Ogura
, and
M.
Sakata
,
Radio Sci.
16
,
831
(
1981
).
4.
J.
Nakayama
,
M.
Sakata
, and
H.
Ogura
,
Radio Sci.
16
,
847
(
1981
).
5.
J.
Nakayama
,
Radio Sci.
17
,
558
(
1982
).
6.
H.
Ogura
and
N.
Takahashi
,
J. Opt. Soc. Am. A
2
,
2208
(
1985
).
7.
J. Nakayama, Ph.D. dissertation, Kyoto University, Kyoto, Japan, 1982.
8.
J.
Nakayama
,
K.
Mizutani
,
H.
Ogura
, and
S.
Hayashi
,
J. Appl. Phys.
56
,
1465
(
1984
).
9.
N. Wiener, Nonlinear Problems in Random Theory (MIT, Cambridge, MA, 1958).
10.
K.
Ito
,
J. Math. Soc. Jpn.
13
,
157
(
1951
).
11.
K.
Ito
,
Jpn. J. Math.
22
,
63
(
1952
).
12.
H.
Ogura
,
Phys. Rev. A
11
,
942
(
1975
).
13.
Light Scattering by Irregularly Shaped Particles, edited by D. W. Schuerman (Plenum, New York, 1980).
14.
S.
Mukai
,
T.
Mukai
,
R. H.
Giese
,
K.
Weiss
, and
R. H.
Zerull
,
Moon Planets
26
,
197
(
1982
).
15.
R.
Schiffer
,
Astron. Astrophys.
148
,
347
(
1985
).
16.
C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
17.
S.
Hayashi
,
Jpn. J. Appl. Phys.
23
,
665
(
1984
).
18.
T.
Oguchi
,
Proc. IEEE
71
,
1029
(
1983
).
19.
R.
Schiffer
and
K. O.
Thielheim
,
J. Appl. Phys.
57
,
2437
(
1985
).
20.
P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw‐Hill, New York, 1953).
21.
H.
Ogura
and
H.
Nakayama
,
J. Math. Phys.
29
,
851
(
1988
).
22.
I. M. Gel’fand, R. A. Minlos, and Z. Ya Shapiro, Representation of the Rotation and Lorentz Groups and their Applications, English translation (Pergamon, London, 1963).
23.
N. Ja. Vilenkin, Special Functions and the Theory of Group Representations, English translation (American Mathematical Society, Providence, 1968).
24.
A. M.
Yaglom
,
Theory Prob. Appls.
2
,
273
(
1957
).
25.
A. M.
Yaglom
,
Proc. Fourth Berkeley Symp. Math. Stat. Prob.
2
,
593
(
1961
).
26.
A. I.
Ponomarenko
,
Sov. Math. Dokl.
14
,
582
(
1973
).
27.
R. H.
Jones
,
Ann. Math. Statist.
34
,
1
(
1963
).
28.
M. I. Yadrenko, Spectral Theory of Random Fields, English translation (Optimization Software, Inc., New York, 1983).
29.
J. L. Doob, Stochastic Processes (Wiley, New York, 1953).
30.
H.
Ogura
,
J. Phys. Soc. Jpn.
25
,
586
(
1968
).
31.
H.
Ogura
,
J. Phys. Soc. Jpn.
24
,
1370
(
1968
).
This content is only available via PDF.
You do not currently have access to this content.