A graded Weil homomorphism is defined for principal superfiber bundles and the related transgression (or Chern–Simons) forms are introduced. As an example of the application of these concepts, a ‘‘superextension’’ of the Dirac monopole is discussed.

1.
S. S.
Chern
and
J.
Simons
,
Ann. Math.
99
,
48
(
1974
).
2.
R. Jackiw, in Proceedings of the Santa Fe Meeting of the Division of Particles and Fields of the American Physical Society, 1984, edited by T. Goldman and M. M. Nieto (World Scientific, Singapore, 1985).
3.
S.
Deser
,
R.
Jackiw
, and
S.
Templeton
,
Ann. Phys.
140
,
372
(
1982
).
4.
B. Zumino, Relativity, Groups and Topology, edited by B. S. De Witt and R. Stora (North‐Holland, Amsterdam, 1984).
5.
R. Stora, in Progress in Gauge Field Theory, NATO ASI Series B, Vol. 115, edited by G. t’Hooft, A. Jaffe, H. Lehmann, P. K. Mitter, I. M. Singer, and R. Stora (Plenum, New York, 1984).
6.
M.
Dubois‐Violette
,
M.
Talon
, and
C. M.
Viallet
,
Commun. Math. Phys.
102
,
105
(
1985
).
7.
M. B.
Green
and
J. H.
Schwarz
,
Phys. Lett. B
149
,
117
(
1984
).
8.
P. Van Nieuwenhuizen, in Proceedings of the Santa Fe Meeting of the Division of Particles and Fields of the American Physical Society, 1984, edited by T. Goldman and M. M. Nieto (World Scientific, Singapore, 1985).
9.
A.
Ceresole
,
A.
Lerda
, and
P.
Van Nieuwenhuizen
,
Phys. Rev. D
34
,
1744
(
1986
).
10.
G.
Girardi
and
R.
Grimm
,
Nucl. Phys. B
292
,
181
(
1987
).
11.
L.
Bonora
,
P.
Pasti
, and
M.
Tonin
,
Nucl. Phys. B
286
,
150
(
1987
).
12.
U.
Bruzzo
and
D.
Hernández Ruipérez
,
J. Math. Phys.
30
,
1233
(
1989
).
13.
U.
Bruzzo
and
G.
Landi
,
Phys. Rev. D
39
,
1174
(
1989
).
14.
C.
Bartocci
,
U.
Bruzzo
, and
G.
Landi
,
Lett. Math. Phys.
18
,
235
(
1989
).
15.
S. Kobayashi and K. Nomizu, Foundations of Differential Geometry (Interscience, New York, 1969), Vol. II.
16.
G.
Landi
and
G.
Marmo
,
Phys. Lett. B
192
,
81
(
1987
).
17.
G.
Landi
and
G.
Marmo
,
Phys. Lett.
193
,
61
(
1987
).
18.
L.
Bonora
,
P.
Cotta‐Ramusino
,
M.
Rinaldi
, and
J.
Stasheff
,
Commun. Math. Phys.
112
,
237
(
1987
);
L.
Bonora
,
P.
Cotta‐Ramusino
,
M.
Rinaldi
, and
J.
Stasheff
,
Commun. Math. Phys.
114
,
381
(
1988
).
19.
B. De Witt, Supermanifolds (Cambridge U.P., London, 1984).
20.
A.
Rogers
,
J. Math. Phys.
21
,
1352
(
1980
).
21.
A.
Rogers
,
Commun. Math. Phys.
105
,
375
(
1986
).
22.
C.
Bartocci
and
U.
Bruzzo
,
J. Geom. Phys.
4
,
391
(
1987
).
23.
C. Bartocci, U. Bruzzo, and D. Hernández Ruipérez, J. Geom. Phys., in press (1989);
Preprint 105/1989, Dipartimento di Matematica, University tá di Genova.
24.
M.
Rothstein
,
Trans. AMS
297
,
159
(
1986
).
25.
M. Batchelor, in Mathematical Aspects of Superspace, edited by C. J. S. Clarke, A. Rosenblum, and H.‐J. Seifert (Reidel, Dordrecht, 1984);
A.
Rogers
,
J. Math. Phys.
26
,
2749
(
1985
).
26.
C.
Bartocci
and
U.
Bruzzo
,
J. Math. Phys.
28
,
2363
(
1987
).
27.
C.
Bartocci
and
U.
Bruzzo
,
J. Math. Phys.
29
,
1789
(
1988
).
28.
A.
Rogers
,
J. Math. Phys.
22
,
939
(
1981
).
29.
M. F.
Atiyah
and
R.
Bott
,
Philos. Trans. R. Soc. London Ser. A
308
,
523
(
1982
);
A. López Almorox, “Supergauge theories in graded manifolds,” in Differential Geometric Methods in Mathematical Physics, edited by A. Pérez‐Rendón and P. L. García, Lecture Notes in Math. 1251 (Springer, Berlin, 1987).
30.
U.
Bruzzo
and
R.
Cianci
,
Class. Quantum Grav.
1
,
213
(
1984
).
31.
C.
Bartocci
and
U.
Bruzzo
,
Lett. Math. Phys.
17
,
61
(
1989
).
32.
P. Griffiths and J. Harris, Principles of Algebraic Geometry (Wiley, New York, 1978).
33.
F. A.
Berezin
and
V. N.
Tolstoy
,
Commun. Math. Phys.
78
,
409
(
1981
).
34.
V.
Rittenberg
and
M.
Scheunert
,
J. Math. Phys.
19
,
713
(
1978
).
35.
L.
Bonora
,
P.
Pasti
, and
M.
Tonin
,
J. Math. Phys.
23
,
839
(
1982
).
36.
C.
Bartocci
and
U.
Bruzzo
,
Lett. Math. Phys.
17
,
263
(
1989
).
This content is only available via PDF.
You do not currently have access to this content.