A geometric formulation of the classical principles of D’Alembert and Gauss in analytical mechanics is given, and their equivalence for possibly non‐Riemannian mechanical systems is shown, in the case of ideal holonomic constraints. This is done by means of a Gauss’ function, which is defined in a natural way on the bundle of two‐jets on the configuration space, and which gives the ‘‘intensity’’ of the ‘‘reaction forces’’ of the constraints. It is originated by a metric structure on the bundle of semibasic forms on the phase space determined by the Finslerian kinetic energy functions of the mechanical system.

1.
K. F.
Gauss
, “
Über ein neues allgemeines Grundgesetz der Mechanik
,”
Crelle Journal für die reine und angewandte Mathematik
4
,
232
(
1829
).
2.
C. Godbillon, Géométrie Differentielle et Mécanique Analitique (Hermann, Paris, 1969).
3.
P. Libermann and C. M. Marle, Symplectic Geometry and Analytical Mechanics (Reidel, Dordrecht, 1987).
4.
R. Abraham and J. E. Marsden, Foundations of Mechanics (Benjamin, London, 1978), 2nd ed.
5.
L.
Lilov
and
M.
Lorer
, “
Dynamic analysis of multirigid‐body systems based on the Gauss Principle
,”
Z. Angew. Math. Mech.
62
,
539
(
1982
).
6.
C.‐C. Wang, Mathematical Principles of Mechanics and Electromagnetism. Part A: Analytical and Continuum Mechanics (Plenum, New York, 1979).
7.
A. M.
Vershik
and
L. D.
Faddeev
, “
Differential Geometry and Lagrangian Mechanics with constraints
,”
Sov. Phys. Dokl.
17
,
34
(
1972
).
8.
K. Yano and S. Ishihara, Tangent and Cotangent Bundles (Dekker, New York, 1973).
9.
H. Rund, The Differential Geometry of Finsler Spaces (Springer, Berlin, 1959).
10.
O. R. Ruitz, “Existence of brake orbits in Finsler mechanical systems,” in Geometry and Topology, Lecture Notes in Mathematics, Vol. 597 (Springer, Berlin, 1977).
11.
A. C. Eringen, “Tensor Analysis,” in Continuum Physics (Academic, New York, 1971), Vol. 1.
12.
M. Spivak, A Comprehensive Introduction to Differential Geometry (Publish or Perish, Berkeley, CA, 1979), Vol. 2.
This content is only available via PDF.
You do not currently have access to this content.