It is shown that the triple sum series of Jucys and Bandzaitis [AngularMomentumTheoryinQuantumPhysics (Vilnius, Mokslas, 1977)] for the 9j coefficient can be identified with a formal triple hypergeometric series due to Lauricella–Saran–Srivastava [G. Lauricella, Rend. Circ. Mat. Palermo 7, 111 (1893); L. Saran, Ganita 5, 77 (1954); H. M. Srivastava, Ganita 5, 97 (1964)].

1.
L. C. Biedenharn and J. D. Louck, “Angular momentum in quantum physics,” in Encyclopedia of Mathematics and its Applications (Addison‐Wesley, New York, 1981), Vol. 8. The expression (3.326), on p. 130 of this reference, contains two misprints. They are the factor (a+d+h+1−z)! occurs twice instead of once and the factor (b+f−a−j+x+z)! should be (b−f−a+j+x+z)!
2.
K.
Srinivasa Rao
,
T. S.
Santhanam
, and
K.
Venkatesh
,
J. Math. Phys.
16
,
1528
(
1975
);
K. Srinivasa Rao and K. Venkatesh, Fifth International Colloquium on Group Theoretical Methods in Physics (Academic, New York, 1977);
K.
Srinivasa Rao
and
V.
Rajeswari
,
Int. J. Theor. Phys.
24
,
983
(
1985
).
3.
A. P. Jucys and A. A. Bandzaitis, Angular Momentum Theory in Quantum Physics (Vilnius, Mokslas, 1977).
4.
H. M.
Srivastava
,
Proc. Cambridge Philos. Soc.
63
,
425
(
1967
).
5.
H. Exton, Multiple Hypergeometric Functions and Applications (Wiley, New York, 1976).
6.
G.
Lauricella
,
Rend. Circ. Mat. Palermo
7
,
111
(
1893
).
7.
L.
Saran
,
Ganita
5
,
77
(
1954
).
8.
H. M.
Srivastava
,
Ganita
5
,
97
(
1964
).
9.
A. C. T.
Wu
,
J. Math. Phys.
14
,
1222
(
1973
);
also,
S. J.
Alisaukas
and
A. P.
Jucys
,
J. Math. Phys.
12
,
594
(
1971
).,
J. Math. Phys.
10.
K.
Srinivasa Rao
and
V.
Rajeswari
,
J. Phys. A: Math. Gen.
21
,
4255
(
1988
).
11.
K. Srinivasa Rao, V. Rajeswari, and C. B. Chiu, to be published in Comput. Phys. Commun.
12.
J. A. N. Lee, Numerical Analysis for Computers (Reinhold, New York, 1966).
This content is only available via PDF.
You do not currently have access to this content.