It is demonstrated that the KdV equation with nonuniformities, ut+a(t)u+(b(x,t)u)x +c(t)uux+d(t)uxxx +e(x,t)=0, has the Painlevé property if the compatibility condition among the coefficients of it holds: bt+(aLc)b+bbx +dbxxx =2ah+hL(d/c2)+(dh/dt)+ce +x[2a2+aL(d3/c4)+(da/dt) +L(d/c)L(d/c2)+(d/dt)L(d/c)], where L=(d/dt)lg and h(t) is an arbitrary function of t. The auto‐Bäcklund transformation and Lax pairs for this equation are obtained by truncating the Laurent expansion. Furthermore, assuming the compatibility condition, then the KdV equation with nonuniformities is transformable, via suitable variable transformations, to the standard KdV.

1.
M. J.
Ablowitz
,
A.
Ramani
, and
H.
Segur
,
J. Math. Phys.
21
,
715
(
1980
).
2.
F. Calogero and A. Degasperis, Spectral Transform and Solitons (North‐Holland, Amsterdam, 1982), Vol. I.
3.
J.
Weiss
,
M.
Tabor
, and
G.
Carnevale
,
J. Math. Phys.
24
,
522
(
1983
).
4.
W. H.
Steeb
,
M.
Kloke
,
B. M.
Spieker
, and
W.
Oevel
,
J. Phys. A.
16
,
L447
(
1983
).
5.
W.
Oevel
and
W. H.
Steeb
,
Phys. Lett. A
103
,
239
(
1984
).
6.
S.
Puri
,
Phys. Lett. A
107
,
359
(
1985
).
7.
S.
Maxon
and
J.
Viecelli
,
Phys. Fluids
17
,
1614
(
1974
).
8.
A.
Greco
,
C. R. Acad. Sci. Paris
305
,
151
(
1987
).
9.
J. W.
Miles
,
J. Fluid Mech.
91
,
81
(
1979
).
10.
R.
Hirota
and
J.
Satsuma
,
J. Phys. Soc. Jpn. Lett.
41
,
2141
(
1976
).
11.
R.
Hirota
,
J. Phys. Soc. Jpn. Lett.
46
,
1681
(
1979
).
12.
T.
Brugarino
and
P.
Pantano
,
Phys. Lett. A
80
,
223
(
1980
).
13.
N.
Nirmala
,
M. J.
Vedan
, and
B. V.
Baby
,
J. Math. Phys.
27
,
2640
(
1986
).
14.
L.
Hlavaty
,
J. Phys. Soc. Jpn.
55
,
1405
(
1986
).
15.
N.
Joshi
,
Phys. Lett. A
125
,
456
(
1987
).
This content is only available via PDF.
You do not currently have access to this content.