It is demonstrated that the KdV equation with nonuniformities, ut+a(t)u+(b(x,t)u)x +c(t)uux+d(t)uxxx +e(x,t)=0, has the Painlevé property if the compatibility condition among the coefficients of it holds: bt+(a−Lc)b+bbx +dbxxx =2ah+hL(d/c2)+(dh/dt)+ce +x[2a2+aL(d3/c4)+(da/dt) +L(d/c)L(d/c2)+(d/dt)L(d/c)], where L=(d/dt)lg and h(t) is an arbitrary function of t. The auto‐Bäcklund transformation and Lax pairs for this equation are obtained by truncating the Laurent expansion. Furthermore, assuming the compatibility condition, then the KdV equation with nonuniformities is transformable, via suitable variable transformations, to the standard KdV.
REFERENCES
1.
M. J.
Ablowitz
, A.
Ramani
, and H.
Segur
, J. Math. Phys.
21
, 715
(1980
).2.
F. Calogero and A. Degasperis, Spectral Transform and Solitons (North‐Holland, Amsterdam, 1982), Vol. I.
3.
J.
Weiss
, M.
Tabor
, and G.
Carnevale
, J. Math. Phys.
24
, 522
(1983
).4.
W. H.
Steeb
, M.
Kloke
, B. M.
Spieker
, and W.
Oevel
, J. Phys. A.
16
, L447
(1983
).5.
6.
7.
8.
9.
10.
11.
12.
13.
N.
Nirmala
, M. J.
Vedan
, and B. V.
Baby
, J. Math. Phys.
27
, 2640
(1986
).14.
15.
This content is only available via PDF.
© 1989 American Institute of Physics.
1989
American Institute of Physics
You do not currently have access to this content.