Some generalized soliton solutions of the cosmological Einstein–Rosen type defined in the space‐time region t2z2 in terms of canonical coordinates are considered. Vacuum solutions are studied and interpreted as cosmological models. Fluid solutions are also considered and are seen to represent inhomogeneous cosmological models that become homogeneous at t→∞. A subset of them evolve toward isotropic Friedmann–Robertson–Walker metrics.

1.
D. W.
Kitchingham
,
Class. Quantum Gravit.
1
,
677
(
1984
).
2.
E. Verdaguer, Observational and Theoretical Aspects of Relativistic Astrophysics and Cosmology, edited by J. L. Sanz and L. J. Giocoechea (World Scientific, Singapore, 1985), p. 311.
3.
V. A.
Belinskii
and
V. E.
Zakharov
,
Sov. Phys. JETP
49
,
985
(
1979
).
4.
A.
Feinstein
and
Ch.
Charach
,
Class. Quantum Gravit.
3
,
L5
(
1985
).
5.
J.
Céspedes
and
E.
Verdaguer
,
Class. Quantum Gravit.
4
,
L7
(
1987
).
6.
B. J.
Carr
and
E.
Verdaguer
,
Phys. Rev. D
28
,
2995
(
1983
).
7.
G. F. R.
Ellis
and
M. A. H.
MacCallum
,
Commun. Math. Phys.
12
,
108
(
1969
).
8.
J.
Wainwright
,
W. C. W.
Ince
, and
B. J.
Marshman
,
Gen. Relativ. Gravit.
10
,
259
(
1979
).
9.
E.
Verdaguer
,
Gen. Relativ. Gravit.
18
,
1045
(
1986
).
10.
A. Feinstein and Ch. Charach, “Composite universes,” Ben‐Gurion University of the Negev preprint, Israel, 1986.
11.
M.
Carmeli
and
Ch.
Charach
,
Phys. Lett. A
75
,
333
(
1980
).
12.
M.
Carmeli
,
Ch.
Charach
, and
S.
Malin
,
Phys. Rep.
76
,
79
(
1981
).
13.
R.
Tabensky
and
A. H.
Taub
,
Commun. Math. Phys.
29
,
61
(
1973
).
14.
P.
Letelier
,
J. Math. Phys.
20
,
2078
(
1979
).
15.
D. Kramer, H. Stephani, M. MacCallum, and E. Herlt, Exact Solutions of Einstein Field Equations (Cambridge U.P., Cambridge, 1980).
16.
J.
Ibañez
and
E.
Verdaguer
,
Phys. Rev. Lett.
51
,
1313
(
1983
).
17.
D. W. Kitchingham, Ph.D. thesis, Queen Mary College, 1986.
18.
R. A.
d’Inverno
and
R. A.
Russell‐Clarck
,
J. Math. Phys.
12
,
1258
(
1971
).
19.
S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Spacetime (Cambridge U.P., Cambridge, 1973).
20.
V. A.
Belinskii
,
Sov. Phys. JETP
50
,
623
(
1979
).
21.
R.
Tabensky
and
P. S.
Letelier
,
J. Math. Phys.
15
,
594
(
1974
).
This content is only available via PDF.
You do not currently have access to this content.