As is well known, the binomial theorem is a classical mathematical relation that can be straightforwardly proved by induction or through a Taylor expansion, albeit it remains valid as long as [A,B]=0. In order to generalize such an important equation to cases where [A,B]≠0, an algebraic approach based on Cauchy’s integral theorem in conjunction with the Baker–Campbell–Hausdorff series is presented that allows a partial extension of the binomial theorem when the commutator [A,B]=c, where c is a constant. Some useful applications of the new proposed generalized binomial formula, such as energy eigenvalues and matrix elements of power, exponential, Gaussian, and arbitrary f(x̂) functions in the one‐dimensional harmonic oscillator representation are given. The results here obtained prove to be consistent in comparison to other analytical methods.

1.
F. J.
Dyson
,
Phys. Rev.
75
,
486
(
1949
).
2.
R. P.
Feynman
,
Phys. Rev.
84
,
108
(
1951
).
3.
W.
Magnus
,
Commun. Pure Appl. Math.
7
,
649
(
1954
).
4.
P.
Pechukas
and
J. C.
Light
,
J. Chem. Phys.
44
,
3897
(
1966
).
5.
J. E.
Campbell
,
Proc. London Math. Soc.
29
,
14
(
1898
);
H. F.
Baker
,
Proc. London Math. Soc.
34
,
347
(
1902
);
H. F.
Baker
,
35
,
333
(
1903
); ,
Proc. London Math. Soc.
H. F.
Baker
,
36
,
24
(
1904
). ,
Proc. London Math. Soc.
F.
Hausdorff
,
Ber. Verh. Saechs. Akad. Wiss. Leipzig Math. Naturwis. Kl.
58
,
19
(
1906
).
6.
B.
Mielnik
and
J.
Plebanski
,
Ann. Inst. H. Poincare
XII
,
215
(
1970
).
7.
J.
Morales
,
A.
Palma
, and
M.
Berrondo
,
Int. J. Quant. Chem. Symp.
18
,
57
(
1984
).
8.
A.
Palma
,
L.
Sandoval
, and
J.
Morales
,
Int. J. Quant. Chem. Symp.
21
,
729
(
1987
).
9.
J.
Morales
,
A.
Palma
, and
L.
Sandoval
,
Int. J. Quant. Chem.
XXIX
,
211
(
1986
).
10.
J.
Morales
,
L.
Sandoval
, and
A.
Palma
,
J. Math. Phys.
27
,
2966
(
1986
).
11.
J.
Morales
,
J.
Lopez‐Bonilla
, and
A.
Palma
,
J. Math. Phys.
28
,
1032
(
1987
).
12.
J.
Morales
,
L.
Sandoval
,
A.
Palma
, and
J.
Lopez‐Bonilla
,
Chem. Phys. Lett.
135
,
149
(
1987
).
13.
A. Beiser, Concepts of Modern Physics (McGraw‐Hill, Kogakusha, Tokyo, 1967).
14.
E.
Vilallonga
and
D. A.
Micha
,
J. Chem. Phys.
86
,
750
(
1987
).
15.
G. Arfken, Mathematical Methods for Physicists (Academic, New York, 1967).
16.
R. M.
Wilcox
,
J. Chem. Phys.
45
,
3312
(
1966
).
17.
R. P. Feynman, Statistical Mechanics. A Set of Lectures (Benjamin, New York, 1972).
See also S. Flugge, Practical Quantum Mechanics, Part I (Springer, Berlin, 1974).
18.
J. L.
Richardson
and
R.
Blankenbecler
,
Phys. Rev. D
19
,
496
(
1979
).
19.
V.
Namias
,
Am. J. Phys.
55
,
1008
(
1987
).
20.
This formula is equivalent to Eq. (4.3) in Ref. 12; however, it should be pointed out that a misprint has been detected in that paper: (2j+n−m−2r) is to be replaced by (2j+n−m+2r).
21.
R. A.
Sack
,
Philos. Mag.
3
,
497
(
1958
).
22.
S. I.
Chan
and
D.
Stelman
,
J. Chem. Phys.
39
,
545
(
1963
).
This content is only available via PDF.
You do not currently have access to this content.